When he was growing up, Jonathan LeyVa thought hed follow his passion for race cars and pick a profession in automotive engineering. Instead hes working on what will become one of the worlds most sensitive searches for dark matter, the invisible substance that accounts for more than 85%of the mass of the universe.
LeyVa works in a clean room at the Department of Energys SLAC National Accelerator Laboratory, where crews are building detectors for the latest in a series ofSuper Cryogenic Dark Matter Search, or SuperCDMS,experiments. As an early-career physicist, part of his job is keeping track of how much exposure to cosmic rayshigh-energy particles falling in from spacethe detector components are getting. Researchers want to keep that exposure to a minimum because it could harm their ability to detect dark matter later on.
Ive been interested in cosmology since my senior year in college, LeyVa says, so Im lucky enough to be able to contribute to an exciting project like this at the frontline of dark matter research.
As a freshman at Santa Clara University, LeyVa started out in mechanical engineering, following his childhood dream of doing something with cars. But he soon realized that the field wasnt for him. Inspired by his dad, who holds a physics degree, and by his physics professor at Santa Clara, he began studying physics during his sophomore year.
Having been committed to engineering at first, making this switch was quite daunting, LeyVa says. But he quickly got into the physics world and completed his undergraduate studies in 2017.
Around the time of his graduation, Santa Clara Professor Betty Young suggested that LeyVa spend some time inKent Irwins labat Stanford University, where Young is a visiting scholar. There he learned about SQUIDssuperconducting quantum interference devices used in precision sensors, including those for dark matter searches with SuperCDMS.
This experience got LeyVa hooked on dark matter, whose nature is still unknown and one of the biggest mysteries of modern physics.
He spent the following year with Blas Cabreras team at Stanford, looking for ways of making future SuperCDMS detectorsmore sensitive to lightweight dark matter particles. In 2018he became a member of the SuperCDMS group at SLACs and StanfordsKavli Institute for Particle Astrophysics and Cosmology, which is building detector towers for the current version of the experiment; its scheduled to begin its hunt for dark matter at the Canadian underground lab SNOLAB in the early 2020s.
Nowadays, LeyVa spends a lot of his time in a clean room at SLAC, supporting the SuperCDMS team in assembling the detector towers.
SuperCDMS SNOLAB will initially have four towers, each containing a stack of six silicon and germanium crystals and a bunch of sensitive electronics. Cooled down to almost absolute zero temperature, the crystals will vibrate ever so slightly if a dark matter particle rushes through them, and its these tiny vibrations that the experiment will be looking for.
A major challenge in building the experiment is that the crystals and other detector components are sensitive to particle showers produced when cosmic rays hit the atmosphere. These showers cause unwanted background signals that could make it hard to pick up potential dark matter signals. Thats why the experiment at SNOLAB will operate 6800 feet underground, where its protected from those effects.
It also means that the SuperCDMS team must limit how much detector components are exposed to cosmic rays during the construction of the experiment. Components for the detector towers, for example, are kept three stories underground in a tunnel at Stanford, where they are relatively protected. For the tower assembly and testing, they are brought to SLAC, but each tower can spend only a total of a week at the surface. LeyVa is like a cosmic-ray bookkeeper, closely tracking and logging the number of hours that crystals and hundreds of other detector components are being handled at the lab. Working closely with the teams software developers, hes maintaining and improving the database for that task.
In addition, hes involved in a number of other parts of the project, including noise studies of the system that will collect SuperCDMS data and R&D for future generations of the experiment.
Working on SuperCDMS is just the type of hands-on experience LeyVa enjoys. He loves to experimentat work and in his spare time. It seems that I have too many hobbies for my own good, he says jokingly.
In college, LeyVa volunteered on film crews, which involved him in videography, lighting and acting for several productions. As a media systems technician at his university he set up large-scale sound and video systems for important events. One of the most memorable ones, he says, was a talk by actor Martin Sheen.
Sheen talked about social justice and activism, and I remember his presence created quite a buzz at SCU, he says. I grew up seeing him in some of my favorite movies. He seemed to be a very warm, kind person.
LeyVa is also into photographyan interest that was sparked by his parents. In the early 2000s up to about 2010-ish both my parents ran an advertising agency, taking jobs from some Silicon Valley tech companies. My dad would do photography and my mom would do editing work and graphic design, he says. My parents and my activities in college were influences that may have inspired me to fiddle with instruments in more depth.
In SLACs clean room he continues to find inspiration. SuperCDMS allows him to work on many sides of the projects science and technology, which he considers to be a great learning experience.
Right now, LeyVas planning his next steps in life, such as going to grad school. Particle physics with an emphasis on cosmology and astrophysics is what interests me the most, so becoming involved in cutting-edge cosmological research has been a dream come true for me, he says. Its motivating me to take it to the next level and follow in the footsteps of the great researchers Im working with.
Editor's note: This article is adapted from anarticleoriginally published by SLAC National Accelerator Laboratory.
Read more from the original source:
A day in the life of a cosmic-ray 'bookkeeper' - Symmetry magazine
- Rotational spectra of isotopic species of methyl cyanide, CH_3CN, in their ground vibrational states up to terahertz frequencies [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Cosmological parameter extraction and biases from type Ia supernova magnitude evolution [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Continuous monitoring of pulse period variations in Hercules X-1 using Swift/BAT [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Constraining the ortho-to-para ratio of H{_2} with anomalous H{_2}CO absorption [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- A photometric and spectroscopic study of the new dwarf spheroidal galaxy in Hercules - Metallicity, velocities, and a clean list of RGB members [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Luminosities and mass-loss rates of SMC and LMC AGB stars and red supergiants [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Electron beam – plasma system with the return current and directivity of its X-ray emission [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The propagation of the shock wave from a strong explosion in a plane-parallel stratified medium: the Kompaneets approximation [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Analysis of hydrogen-rich magnetic white dwarfs detected in the Sloan Digital Sky Survey [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Letter: Centaurus A as TeV \gamma-ray and possible UHE cosmic-ray source [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Young pre-low-mass X-ray binaries in the propeller phase - Nature of the 6.7-h periodic X-ray source 1E 161348-5055 in RCW 103 [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Radiative rates and electron impact excitation rates for transitions in Cr VIII [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Solar granulation from photosphere to low chromosphere observed in Ba II 4554 Å line [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Does the HD 209458 planetary system pose a challenge to the stellar atmosphere models? [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Effect of asymmetry of the radio source distribution on the apparent proper motion kinematic analysis [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Destriping CMB temperature and polarization maps [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Search for cold debris disks around M-dwarfs. II [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Precise data on Leonid fireballs from all-sky photographic records [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- An X-ray view of 82 LINERs with Chandra and XMM-Newton data [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Radio observations of ZwCl 2341.1+0000: a double radio relic cluster [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Candidate free-floating super-Jupiters in the young \sigma Orionis open cluster [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The metallicity gradient as a tracer of history and structure: the Magellanic Clouds and M33 galaxies [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- XMMSL1 J060636.2-694933: an XMM-Newton slew discovery and Swift/Magellan follow up of a new classical nova in the LMC [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The inner rim structures of protoplanetary discs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The solar Ba{\sf II} 4554 Å line as a Doppler diagnostic: NLTE analysis in 3D hydrodynamical model [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Magnetic evolution of superactive regions - Complexity and potentially unstable magnetic discontinuities [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Low-mass protostars and dense cores in different evolutionary stages in IRAS 00213+6530 [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- PMAS optical integral field spectroscopy of luminous infrared galaxies - I. The atlas [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- First AGILE catalog of high-confidence gamma-ray sources [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Radiative hydrodynamics simulations of red supergiant stars - I. interpretation of interferometric observations [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Extrasolar planets and brown dwarfs around A–F type stars - VII. \theta Cygni radial velocity variations: planets or stellar phenomenon? [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253 - II. The magnetic field structure [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Physical structure and water line spectrum predictions of the intermediate mass protostar OMC2-FIR4 [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The bright galaxy population of five medium redshift clusters - II. Quantitative galaxy morphology [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Dust in brown dwarfs and extra-solar planets - II. Cloud formation for cosmologically evolving abundances [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The quiet Sun magnetic field observed with ZIMPOL on THEMIS - I. The probability density function [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Complexity in the sunspot cycle [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Properties and nature of Be stars - 26. Long-term and orbital changes of \zeta Tauri [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The massive Wolf-Rayet binary LSS 1964 (=WR 29) - II. The V light curve [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Supernova progenitor stars in the initial range of 23 to 33 solar masses and their relation with the SNR Cassiopeia A [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Hertzsprung-Russell Diagram of Star Clusters [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Table of the 10 Brightest stars within 10 Parsecs of the Sun [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Hertzsprung-Russell Diagram of the Nearest Stars [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Magnitude and Color in Astronomy [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Stellar Types [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Brown Dwarfs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Spotting the Minimum [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Structure and Evolution of Brown Dwarfs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- No Bang from the Big Bang Machine [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Sizes of the Stars and the Planets [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- An Implausible Light Thrust [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- the Masses of Degenerate Objects [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Degeneracy Pressure [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Introduction to Degenerate Objects [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Radii of Degenerate Objects [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Inevitability of Black Holes [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Scientific Pig-Out [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Neutrino Cooling of Degenerate Dwarfs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Neutrino Cooling of Neutron Stars [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Overview of Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Energetics of Thermonuclear Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Thermonuclear Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Nuclear Reactions in Thermonuclear Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Core-Collapse Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Neutrinos and SN 1987A [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Revealing the sub-AU asymmetries of the inner dust rim in the disk around the Herbig Ae star R Coronae Austrinae [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Probing the dust properties of galaxies up to submillimetre wavelengths - I. The spectral energy distribution of dwarf galaxies using LABOCA [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- On the physical origin of the second solar spectrum of the Sc II line at 4247 Å [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- On detecting the large separation in the autocorrelation of stellar oscillation times series [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Imaging the spotty surface of Betelgeuse in the H band [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Chandra observation of Cepheus A: the diffuse emission of HH 168 resolved [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- A planetary eclipse map of CoRoT-2a - Comprehensive lightcurve modeling combining rotational-modulation and transits [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- The chemical composition of carbon stars. The R-type stars [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Flow instabilities of magnetic flux tubes - IV. Flux storage in the solar overshoot region [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Fragmentation of a dynamically condensing radiative layer [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Temporal variations of the CaXIX spectra in solar flares [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Deuterium chemistry in the Orion Bar PDR - “Warm” chemistry starring CH_{2}D^+ [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Metal abundances in the cool cores of galaxy clusters [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- The nature of the X-ray binary IGR J19294+1816 from INTEGRAL, RXTE, and Swift observations [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Relating basic properties of bright early-type dwarf galaxies to their location in Abell 901/902 [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]