Our world is undergoing an information Big Bang, in which the universe of data doubles every two years and quintillions of bytes of data are generated every day.1 For decades, Moores Law on the doubling of computing power every 18-24 months has driven the growth of information technology. Nowas billions of smartphones and other devices collect and transmit data over high-speed global networks, store data in ever-larger data centers, and analyze it using increasingly powerful and sophisticated softwareMetcalfes Law comes into play. It treats the value of networks as a function of the square of the number of nodes, meaning that network effects exponentially compound this historical growth in information. As 5G networks and eventually quantum computing deploy, this data explosion will grow even faster and bigger.
The impact of big data is commonly described in terms of three Vs: volume, variety, and velocity.2 More data makes analysis more powerful and more granular. Variety adds to this power and enables new and unanticipated inferences and predictions. And velocity facilitates analysis as well as sharing in real time. Streams of data from mobile phones and other online devices expand the volume, variety, and velocity of information about every facet of our lives and puts privacy into the spotlight as a global public policy issue.
Artificial intelligence likely will accelerate this trend. Much of the most privacy-sensitive data analysis todaysuch as search algorithms, recommendation engines, and adtech networksare driven by machine learning and decisions by algorithms. As artificial intelligence evolves, it magnifies the ability to use personal information in ways that can intrude on privacy interests by raising analysis of personal information to new levels of power and speed.
As artificial intelligence evolves, it magnifies the ability to use personal information in ways that can intrude on privacy interests by raising analysis of personal information to new levels of power and speed.
Facial recognition systems offer a preview of the privacy issues that emerge. With the benefit of rich databases of digital photographs available via social media, websites, drivers license registries, surveillance cameras, and many other sources, machine recognition of faces has progressed rapidly from fuzzy images of cats3 to rapid (though still imperfect) recognition of individual humans. Facial recognition systems are being deployed in cities and airports around America. However, Chinas use of facial recognition as a tool of authoritarian control in Xinjiang4 and elsewhere has awakened opposition to this expansion and calls for a ban on the use of facial recognition. Owing to concerns over facial recognition, the cities of Oakland, Berkeley, and San Francisco in California, as well as Brookline, Cambridge, Northampton, and Somerville in Massachusetts, have adopted bans on the technology.5 California, New Hampshire, and Oregon all have enacted legislation banning use of facial recognition with police body cameras.6
This policy brief explores the intersection between AI and the current privacy debate. As Congress considers comprehensive privacy legislation to fill growing gaps in the current checkerboard of federal and state privacy, it will need to consider if or how to address use personal information in artificial intelligence systems. In this brief, I discuss some potential concerns regarding artificial intelligence and privacy, including discrimination, ethical use, and human control, as well as the policy options under discussion.
The challenge for Congress is to pass privacy legislation that protects individuals against any adverse effects from the use of personal information in AI, but without unduly restricting AI development or ensnaring privacy legislation in complex social and political thickets. The discussion of AI in the context of the privacy debate often brings up the limitations and failures of AI systems, such as predictive policing that could disproportionately affect minorities7 or Amazons failed experiment with a hiring algorithm that replicated the companys existing disproportionately male workforce.8 These both raise significant issues, but privacy legislation is complicated enough even without packing in all the social and political issues that can arise from uses of information. To evaluate the effect of AI on privacy, it is necessary to distinguish between data issues that are endemic to all AI, like the incidence of false positives and negatives or overfitting to patterns, and those that are specific to use of personal information.
The privacy legislative proposals that involve these issues do not address artificial intelligence in name. Rather, they refer to automated decisions (borrowed from EU data protection law) or algorithmic decisions (used in this discussion). This language shifts peoples focus from the use of AI as such to the use of personal data in AI and to the impact this use may have on individuals. This debate centers in particular on algorithmic bias and the potential for algorithms to produce unlawful or undesired discrimination in the decisions to which the algorithms relate. These are major concerns for civil rights and consumer organizations that represent populations that suffer undue discrimination.
Addressing algorithmic discrimination presents basic questions about the scope of privacy legislation. First, to what extent can or should legislation address issues of algorithmic bias? Discrimination is not self-evidently a privacy issue, since it presents broad social issues that persist even without the collection and use of personal information, and fall under the domain of various civil rights laws. Moreover, making these laws available for debate could effectively open a Pandoras Box because of the charged political issues they touch on and the multiple congressional committees with jurisdiction over various such issues. Even so, discrimination is based on personal attributes such as skin color, sexual identity, and national origin. Use of personal information about these attributes, either explicitly ormore likely and less obviouslyvia proxies, for automated decision-making that is against the interests of the individual involved thus implicates privacy interests in controlling how information is used.
This charade of consent has made it obvious that notice-and-choice has become meaningless. For many AI applications it will become utterly impossible.
Second, protecting such privacy interests in the context of AI will require a change in the paradigm of privacy regulation. Most existing privacy laws, as well as current Federal Trade Commission enforcement against unfair and deceptive practices, are rooted in a model of consumer choice based on notice-and-choice (also referred to as notice-and-consent). Consumers encounter this approach in the barrage of notifications and banners linked to lengthy and uninformative privacy policies and terms and conditions that we ostensibly consent to but seldom read. This charade of consent has made it obvious that notice-and-choice has become meaningless. For many AI applicationssmart traffic signals and other sensors needed to support self-driving cars as one prominent exampleit will become utterly impossible.
Although almost all bills on Capitol Hill still rely on the notice-and-choice model in some degree, key congressional leaders as well as privacy stakeholders have expressed desire to change this model by shifting the burden of protecting individual privacy from consumers over to the businesses that collect data.9 In place of consumer choice, their model focuses on business conduct by regulating companies processing of datawhat they collect and how they can use it and share it. Addressing data processing that results in any algorithmic discrimination can fit within this model.
A model focused on data collection and processing may affect AI and algorithmic discrimination in several ways:
In addition to these provisions of general applicability that may affect algorithmic decisions indirectly, a number of proposals specifically address the subject.10
The responses to AI that are currently under discussion in privacy legislation take two main forms. The first targets discrimination directly. A group of 26 civil rights and consumer organizations wrote a joint letter advocating to prohibit or monitor use of personal information with discriminatory impacts on people of color, women, religious minorities, members of the LGBTQ+ community, persons with disabilities, persons living on l winsome, immigrants, and other vulnerable populations.11 The Lawyers Committee for Civil Rights Under Law and Free Press Action have incorporated this principle into model legislation aimed at data discrimination affecting economic opportunity, public accommodations, or voter suppression.12 This model is substantially reflected in the Consumer Online Privacy Rights Act, which was introduced in the waning days of the 2019 congressional session by Senate Commerce Committee ranking member Maria Cantwell (D-Wash.). It also includes a similar provision restricting the processing of personal information that discriminates against or classifies individuals on the basis of protected attributes such race, gender, or sexual orientation.13 The Republican draft counterproposal addresses the potential for discriminatory use of personal information by calling on the Federal Trade Commission to cooperate with agencies that enforce discrimination laws and to conduct a study.14
This approach to algorithmic discrimination implicates debates over private rights of action in privacy legislation. The possibility of such individual litigation is a key point of divergence between Democrats aligned with consumer and privacy advocates on one hand, and Republicans aligned with business interests on the other. The former argue that private lawsuits are a needed force multiplier for federal and state enforcement, while the latter express concern that class action lawsuits, in particular, burden business with litigation over trivial issues. In the case of many of the kinds of discrimination enumerated in algorithmic discrimination proposals, existing federal, state, and local civil rights laws enable individuals to bring claims for discrimination. Any federal preemption or limitation on private rights of action in federal privacy legislation should not impair these laws.
The second approach addresses risk more obliquely, with accountability measures designed to identify discrimination in the processing of personal data. Numerous organizations and companies as well as several legislators propose such accountability. Their proposals take various forms:
A sense of fairness suggests such a safety valve should be available for algorithmic decisions that have a material impact on individuals lives. Explainability requires (1) identifying algorithmic decisions, (2) deconstructing specific decisions, and (3) establishing a channel by which an individual can seek an explanation. Reverse-engineering algorithms based on machine learning can be difficult, and even impossible, a difficulty that increases as machine learning becomes more sophisticated. Explainability therefore entails a significant regulatory burden and constraint on use of algorithmic decision-making and, in this light, should be concentrated in its application, as the EU has done (at least in principle) with its legal effects or similarly significant effects threshold. As understanding increases about the comparative strengths of human and machine capabilities, having a human in the loop for decisions that affect peoples lives offers a way to combine the power of machines with human judgment and empathy.
Because of the difficulties of foreseeing machine learning outcomes as well as reverse-engineering algorithmic decisions, no single measure can be completely effective in avoiding perverse effects. Thus, where algorithmic decisions are consequential, it makes sense to combine measures to work together. Advance measures such as transparency and risk assessment, combined with the retrospective checks of audits and human review of decisions, could help identify and address unfair results. A combination of these measures can complement each other and add up to more than the sum of the parts. Risk assessments, transparency, explainability, and audits also would strengthen existing remedies for actionable discrimination by providing documentary evidence that could be used in litigation. Not all algorithmic decision-making is consequential, however, so these requirements should vary according to the objective risk.
The window for this Congress to pass comprehensive privacy legislation is narrowing. While the Commerce Committee in each house of Congress has been working on a bipartisan basis throughout 2019 and have put out discussion drafts, they have yet to reach agreement on a bill. Meanwhile, the California Consumer Privacy Act went into effect on Jan. 1, 2020,21 impeachment and war powers have crowded out other issues, and the presidential election is going into full swing.
The window for this Congress to pass comprehensive privacy legislation is narrowing.
In whatever window remains to pass privacy legislation before the 2020 election, the treatment of algorithmic decision-making is a substantively and politically challenging issue that will need a workable resolution. For a number of civil rights, consumer, and other civil society groups, establishing protections against discriminatory algorithmic decision-making is an essential part of legislation. In turn, it will be important to Democrats in Congress. At a minimum, some affirmation that algorithmic discrimination based on personal information is subject to existing civil rights and nondiscrimination laws, as well as some additional accountability measures, will be essential to the passage of privacy legislation.
The Brookings Institution is a nonprofit organization devoted to independent research and policy solutions. Its mission is to conduct high-quality, independent research and, based on that research, to provide innovative, practical recommendations for policymakers and the public. The conclusions and recommendations of any Brookings publication are solely those of its author(s), and do not reflect the views of the Institution, its management, or its other scholars.
Microsoft provides support to The Brookings InstitutionsArtificial Intelligence and Emerging Technology (AIET) Initiative, and Amazon and Intel provide general, unrestricted support to the Institution. The findings, interpretations, and conclusions in this report are not influenced by any donation. Brookings recognizes that the value it provides is in its absolute commitment to quality, independence, and impact. Activities supported by its donors reflect this commitment.
Read more:
Protecting privacy in an AI-driven world - Brookings Institution
- Classic reasoning systems like Loom and PowerLoom vs. more modern systems based on probalistic networks [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Using Amazon's cloud service for computationally expensive calculations [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Software environments for working on AI projects [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- New version of my NLP toolkit [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Semantic Web: through the back door with HTML and CSS [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Java FastTag part of speech tagger is now released under the LGPL [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Defining AI and Knowledge Engineering [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Great Overview of Knowledge Representation [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Something like Google page rank for semantic web URIs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- My experiences writing AI software for vehicle control in games and virtual reality systems [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The URL for this blog has changed [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- I have a new page on Knowledge Management [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- N-GRAM analysis using Ruby [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Good video: Knowledge Representation and the Semantic Web [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Using the PowerLoom reasoning system with JRuby [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Machines Like Us [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- RapidMiner machine learning, data mining, and visualization tool [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- texai.org [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- NLTK: The Natural Language Toolkit [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- My OpenCalais Ruby client library [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Ruby API for accessing Freebase/Metaweb structured data [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Protégé OWL Ontology Editor [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- New version of Numenta software is available [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Very nice: Elsevier IJCAI AI Journal articles now available for free as PDFs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Verison 2.0 of OpenCyc is available [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- What’s Your Biggest Question about Artificial Intelligence? [Article] [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Minimax Search [Knowledge] [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Decision Tree [Knowledge] [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- More AI Content & Format Preference Poll [Article] [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- New Planners Solve Rescue Missions [News] [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Neural Network Learns to Bluff at Poker [News] [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Pushing the Limits of Game AI Technology [News] [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Mining Data for the Netflix Prize [News] [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Interview with Peter Denning on the Principles of Computing [News] [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Decision Making for Medical Support [News] [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Neural Network Creates Music CD [News] [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- jKilavuz - a guide in the polygon soup [News] [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Artificial General Intelligence: Now Is the Time [News] [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Apply AI 2007 Roundtable Report [News] [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- What Would You do With 80 Cores? [News] [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Software Finds Learning Language Child's Play [News] [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Artificial Intelligence in Games [Article] [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Artificial Intelligence Resources [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Alan Turing: Mathematical Biologist? [Last Updated On: April 25th, 2012] [Originally Added On: April 25th, 2012]
- BBC Horizon: The Hunt for AI ( Artificial Intelligence ) - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Can computers have true artificial intelligence" Masonic handshake" 3rd-April-2012 - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Kevin B. Korb - Interview - Artificial Intelligence and the Singularity p3 - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Artificial Intelligence - 6 Month Anniversary - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Science Breakthroughs [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Hitman: Blood Money - Part 49 - Stupid Artificial Intelligence! - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Research Members Turned Off By HAARP Artificial Intelligence - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Artificial Intelligence Lecture No. 5 - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- The Artificial Intelligence Laboratory, 2012 - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Charlie Rose - Artificial Intelligence - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Expert on artificial intelligence to speak at EPIIC Nights dinner [Last Updated On: May 4th, 2012] [Originally Added On: May 4th, 2012]
- Filipino software engineers complete and best thousands on Stanford’s Artificial Intelligence Course [Last Updated On: May 4th, 2012] [Originally Added On: May 4th, 2012]
- Vodafone xone™ Hackathon Challenges Developers and Entrepreneurs to Build a New Generation of Artificial Intelligence ... [Last Updated On: May 4th, 2012] [Originally Added On: May 4th, 2012]
- Rocket Fuel Packages Up CPG Booster [Last Updated On: May 4th, 2012] [Originally Added On: May 4th, 2012]
- 2 Filipinos finishes among top in Stanford’s Artificial Intelligence course [Last Updated On: May 5th, 2012] [Originally Added On: May 5th, 2012]
- Why Your Brain Isn't A Computer [Last Updated On: May 5th, 2012] [Originally Added On: May 5th, 2012]
- 2 Pinoy software engineers complete Stanford's AI course [Last Updated On: May 7th, 2012] [Originally Added On: May 7th, 2012]
- Percipio Media, LLC Proudly Accepts Partnership With MIT's Prestigious Computer Science And Artificial Intelligence ... [Last Updated On: May 10th, 2012] [Originally Added On: May 10th, 2012]
- Google Driverless Car Ok'd by Nevada [Last Updated On: May 10th, 2012] [Originally Added On: May 10th, 2012]
- Moving Beyond the Marketing Funnel: Rocket Fuel and Forrester Research Announce Free Webinar [Last Updated On: May 10th, 2012] [Originally Added On: May 10th, 2012]
- Rocket Fuel Wins 2012 San Francisco Business Times Tech & Innovation Award [Last Updated On: May 13th, 2012] [Originally Added On: May 13th, 2012]
- Internet Week 2012: Rocket Fuel to Speak at OMMA RTB [Last Updated On: May 16th, 2012] [Originally Added On: May 16th, 2012]
- How to Get the Most Out of Your Facebook Ads -- Rocket Fuel's VP of Products, Eshwar Belani, to Lead MarketingProfs ... [Last Updated On: May 16th, 2012] [Originally Added On: May 16th, 2012]
- The Digital Disruptor To Banking Has Just Gone International [Last Updated On: May 16th, 2012] [Originally Added On: May 16th, 2012]
- Moving Beyond the Marketing Funnel: Rocket Fuel Announce Free Webinar Featuring an Independent Research Firm [Last Updated On: May 23rd, 2012] [Originally Added On: May 23rd, 2012]
- MASA Showcases Latest Version of MASA SWORD for Homeland Security Markets [Last Updated On: May 23rd, 2012] [Originally Added On: May 23rd, 2012]
- Bluesky Launches Drones for Aerial Surveying [Last Updated On: May 23rd, 2012] [Originally Added On: May 23rd, 2012]
- Artificial Intelligence: What happened to the hunt for thinking machines? [Last Updated On: May 25th, 2012] [Originally Added On: May 25th, 2012]
- Bubble Robots Move Using Lasers [VIDEO] [Last Updated On: May 25th, 2012] [Originally Added On: May 25th, 2012]
- UHV assistant professors receive $10,000 summer research grants [Last Updated On: May 27th, 2012] [Originally Added On: May 27th, 2012]
- Artificial intelligence: science fiction or simply science? [Last Updated On: May 28th, 2012] [Originally Added On: May 28th, 2012]
- Exetel taps artificial intelligence [Last Updated On: May 29th, 2012] [Originally Added On: May 29th, 2012]
- Software offers brain on the rain [Last Updated On: May 29th, 2012] [Originally Added On: May 29th, 2012]
- New Dean of Science has high hopes for his faculty [Last Updated On: May 30th, 2012] [Originally Added On: May 30th, 2012]
- Cognitive Code Announces "Silvia For Android" App [Last Updated On: May 31st, 2012] [Originally Added On: May 31st, 2012]
- A Rat is Smarter Than Google [Last Updated On: June 5th, 2012] [Originally Added On: June 5th, 2012]