Space Shuttle Challenger disaster – Wikipedia, the free …

Space Shuttle Challenger disaster Space Shuttle Challenger's smoke plume after its in-flight breakup, resulting in its crash and the deaths of all seven crew members. Date January28,1986(1986-01-28) Time 11:39:13 EST (16:39:13 UTC) Location Atlantic Ocean, off the coast of central Florida Outcome Grounding of the Space Shuttle fleet for nearly three years during which various safety measures, solid rocket booster redesign, and a new policy on management decision-making for future launches were implemented. Casualties Francis R. Scobee, Commander Michael J. Smith, Pilot Ronald McNair, Mission Specialist Ellison Onizuka, Mission Specialist Judith Resnik, Mission Specialist Greg Jarvis, Payload Specialist Christa McAuliffe, Payload Specialist Inquiries Rogers Commission

The Space Shuttle Challenger disaster occurred on January 28, 1986, when Space Shuttle Challenger (mission STS-51-L) broke apart 73 seconds into its flight, leading to the deaths of its seven crew members. The spacecraft disintegrated over the Atlantic Ocean, off the coast of central Florida at 11:38 EST (16:38 UTC). Disintegration of the vehicle began after an O-ring seal in its right solid rocket booster (SRB) failed at liftoff. The O-ring failure caused a breach in the SRB joint it sealed, allowing pressurized hot gas from within the solid rocket motor to reach the outside and impinge upon the adjacent SRB attachment hardware and external fuel tank. This led to the separation of the right-hand SRBs aft attachment and the structural failure of the external tank. Aerodynamic forces broke up the orbiter.

The crew compartment and many other vehicle fragments were eventually recovered from the ocean floor after a lengthy search and recovery operation. The exact timing of the death of the crew is unknown; several crew members are known to have survived the initial breakup of the spacecraft. The shuttle had no escape system, and the impact of the crew compartment with the ocean surface was too violent to be survivable.

The disaster resulted in a 32-month hiatus in the shuttle program and the formation of the Rogers Commission, a special commission appointed by United States President Ronald Reagan to investigate the accident. The Rogers Commission found NASA's organizational culture and decision-making processes had been key contributing factors to the accident.[1] NASA managers had known contractor Morton Thiokol's design of the SRBs contained a potentially catastrophic flaw in the O-rings since 1977, but failed to address it properly. They also disregarded warnings (an example of "go fever") from engineers about the dangers of launching posed by the low temperatures of that morning and had failed in adequately reporting these technical concerns to their superiors.

What Rogers did not highlight was that the vehicle was never certified to operate in temperatures that low. The O-rings, as well as many other critical components, had no test data to support any expectation of a successful launch in such conditions. Bob Ebeling from Thiokol delivered a biting analysis: "[W]e're only qualified to 40 degrees ...'what business does anyone even have thinking about 18 degrees, we're in no man's land.'"[2]

As a result of the disaster, the Air Force decided to cancel its plans to use the Shuttle for classified military satellite launches from Vandenberg Air Force Base in California, deciding to use the Titan IV instead.

Many viewed the launch live because of the presence of crew member Christa McAuliffe, the first member of the Teacher in Space Project, who would have been the first teacher in space. Media coverage of the accident was extensive: one study reported that 85percent of Americans surveyed had heard the news within an hour of the accident. The Challenger disaster has been used as a case study in many discussions of engineering safety and workplace ethics.

Each of the two Space Shuttle Solid Rocket Boosters (SRBs) that comprised part of the Space Transportation System was constructed of seven sections, six of which were permanently joined in pairs at the factory. For each flight, the four resulting segments were then assembled in the Vehicle Assembly Building at Kennedy Space Center (KSC), with three field joints. The factory joints were sealed with asbestos-silica insulation applied over the joint, while each field joint was sealed with two rubber O-rings. (After the destruction of Challenger, the number of O-rings per field joint was increased to three.)[3] The seals of all of the SRB joints were required to contain the hot high-pressure gases produced by the burning solid propellant inside, forcing it out the nozzle at the aft end of each rocket.

During the Space Shuttle design process, a McDonnell Douglas report in September 1971 discussed the safety record of solid rockets. While a safe abort was possible after most types of failures, one was especially dangerous: a burnthrough by hot gases of the rocket's casing. The report stated that "if burnthrough occurs adjacent to [liquid hydrogen/oxygen] tank or orbiter, timely sensing may not be feasible and abort not possible", accurately foreshadowing the Challenger accident.[4]Morton Thiokol was the contractor responsible for the construction and maintenance of the shuttle's SRBs. As originally designed by Thiokol, the O-ring joints in the SRBs were supposed to close more tightly due to forces generated at ignition, but a 1977 test showed that when pressurized water was used to simulate the effects of booster combustion, the metal parts bent away from each other, opening a gap through which gases could leak. This phenomenon, known as "joint rotation," caused a momentary drop in air pressure. This made it possible for combustion gases to erode the O-rings. In the event of widespread erosion, a flame path could develop, causing the joint to burstwhich would have destroyed the booster and the shuttle.[5]

Engineers at the Marshall Space Flight Center wrote to the manager of the Solid Rocket Booster project, George Hardy, on several occasions suggesting that Thiokol's field joint design was unacceptable. For example, one engineer suggested that joint rotation would render the secondary O-ring useless, but Hardy did not forward these memos to Thiokol, and the field joints were accepted for flight in 1980.[6]

See the original post:

Space Shuttle Challenger disaster - Wikipedia, the free ...

Related Posts

Comments are closed.