study of differences between human genomes
Human evolutionary genetics studies how one human genome differs from another human genome, the evolutionary past that gave rise to the human genome, and its current effects. Differences between genomes have anthropological, medical, historical and forensic implications and applications. Genetic data can provide important insights into human evolution.
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
Biologists classify humans, along with only a few other species, as great apes (species in the family Hominidae). The living Hominidae include two distinct species of chimpanzee (the bonobo, Pan paniscus, and the common chimpanzee, Pan troglodytes), two species of gorilla (the western gorilla, Gorilla gorilla, and the eastern gorilla, Gorilla graueri), and two species of orangutan (the Bornean orangutan, Pongo pygmaeus, and the Sumatran orangutan, Pongo abelii). The great apes with the family Hylobatidae of gibbons form the superfamily Hominoidea of apes.
Apes, in turn, belong to the primate order (>400 species), along with the Old World monkeys, the New World monkeys, and others. Data from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) indicate that primates belong to the group of Euarchontoglires, together with Rodentia, Lagomorpha, Dermoptera, and Scandentia.[1] This is further supported by Alu-like short interspersed nuclear elements (SINEs) which have been found only in members of the Euarchontoglires.[2]
A phylogenetic tree is usually derived from DNA or protein sequences from populations. Often, mitochondrial DNA or Y chromosome sequences are used to study ancient human demographics. These single-locus sources of DNA do not recombine and are almost always inherited from a single parent, with only one known exception in mtDNA.[3] Individuals from closer geographic regions generally tend to be more similar than individuals from regions farther away. Distance on a phylogenetic tree can be used approximately to indicate:
The separation of humans from their closest relatives, the non-human apes (chimpanzees and gorillas), has been studied extensively for more than a century. Five major questions have been addressed:
As discussed before, different parts of the genome show different sequence divergence between different hominoids. It has also been shown that the sequence divergence between DNA from humans and chimpanzees varies greatly. For example, the sequence divergence varies between 0% to 2.66% between non-coding, non-repetitive genomic regions of humans and chimpanzees.[8] The percentage of nucleotides in the human genome (hg38) that had one-to-one exact matches in the chimpanzee genome (pantro6) was 84.38%. Additionally gene trees, generated by comparative analysis of DNA segments, do not always fit the species tree. Summing up:
The divergence time of humans from other apes is of great interest. One of the first molecular studies, published in 1967 measured immunological distances (IDs) between different primates.[10] Basically the study measured the strength of immunological response that an antigen from one species (human albumin) induces in the immune system of another species (human, chimpanzee, gorilla and Old World monkeys). Closely related species should have similar antigens and therefore weaker immunological response to each other's antigens. The immunological response of a species to its own antigens (e.g. human to human) was set to be 1.
The ID between humans and gorillas was determined to be 1.09, that between humans and chimpanzees was determined as 1.14. However the distance to six different Old World monkeys was on average 2.46, indicating that the African apes are more closely related to humans than to monkeys. The authors consider the divergence time between Old World monkeys and hominoids to be 30 million years ago (MYA), based on fossil data, and the immunological distance was considered to grow at a constant rate. They concluded that divergence time of humans and the African apes to be roughly ~5 MYA. That was a surprising result. Most scientists at that time thought that humans and great apes diverged much earlier (>15 MYA).
The gorilla was, in ID terms, closer to human than to chimpanzees; however, the difference was so slight that the trichotomy could not be resolved with certainty. Later studies based on molecular genetics were able to resolve the trichotomy: chimpanzees are phylogenetically closer to humans than to gorillas. However, some divergence times estimated later (using much more sophisticated methods in molecular genetics) do not substantially differ from the very first estimate in 1967, but a recent paper[11] puts it at 1114 MYA.
Current methods to determine divergence times use DNA sequence alignments and molecular clocks. Usually the molecular clock is calibrated assuming that the orangutan split from the African apes (including humans) 12-16 MYA. Some studies also include some old world monkeys and set the divergence time of them from hominoids to 25-30 MYA. Both calibration points are based on very little fossil data and have been criticized.[12]
If these dates are revised, the divergence times estimated from molecular data will change as well. However, the relative divergence times are unlikely to change. Even if we can't tell absolute divergence times exactly, we can be pretty sure that the divergence time between chimpanzees and humans is about sixfold shorter than between chimpanzees (or humans) and monkeys.
One study (Takahata et al., 1995) used 15 DNA sequences from different regions of the genome from human and chimpanzee and 7 DNA sequences from human, chimpanzee and gorilla.[13] They determined that chimpanzees are more closely related to humans than gorillas. Using various statistical methods, they estimated the divergence time human-chimp to be 4.7 MYA and the divergence time between gorillas and humans (and chimps) to be 7.2 MYA.
Additionally they estimated the effective population size of the common ancestor of humans and chimpanzees to be ~100,000. This was somewhat surprising since the present day effective population size of humans is estimated to be only ~10,000. If true that means that the human lineage would have experienced an immense decrease of its effective population size (and thus genetic diversity) in its evolution. (see Toba catastrophe theory)
Another study (Chen & Li, 2001) sequenced 53 non-repetitive, intergenic DNA segments from human, chimpanzee, gorilla and orangutan.[8] When the DNA sequences were concatenated to a single long sequence, the generated neighbor-joining tree supported the Homo-Pan clade with 100% bootstrap (that is that humans and chimpanzees are the closest related species of the four). When three species are fairly closely related to each other (like human, chimpanzee and gorilla), the trees obtained from DNA sequence data may not be congruent with the tree that represents the speciation (species tree).
The shorter internodal time span (TIN) the more common are incongruent gene trees. The effective population size (Ne) of the internodal population determines how long genetic lineages are preserved in the population. A higher effective population size causes more incongruent gene trees. Therefore, if the internodal time span is known, the ancestral effective population size of the common ancestor of humans and chimpanzees can be calculated.
When each segment was analyzed individually, 31 supported the Homo-Pan clade, 10 supported the Homo-Gorilla clade, and 12 supported the Pan-Gorilla clade. Using the molecular clock the authors estimated that gorillas split up first 6.2-8.4 MYA and chimpanzees and humans split up 1.6-2.2 million years later (internodal time span) 4.6-6.2 MYA. The internodal time span is useful to estimate the ancestral effective population size of the common ancestor of humans and chimpanzees.
A parsimonious analysis revealed that 24 loci supported the Homo-Pan clade, 7 supported the Homo-Gorilla clade, 2 supported the Pan-Gorilla clade and 20 gave no resolution. Additionally they took 35 protein coding loci from databases. Of these 12 supported the Homo-Pan clade, 3 the Homo-Gorilla clade, 4 the Pan-Gorilla clade and 16 gave no resolution. Therefore, only ~70% of the 52 loci that gave a resolution (33 intergenic, 19 protein coding) support the 'correct' species tree. From the fraction of loci which did not support the species tree and the internodal time span they estimated previously, the effective population of the common ancestor of humans and chimpanzees was estimated to be ~52 000 to 96 000. This value is not as high as that from the first study (Takahata), but still much higher than present day effective population size of humans.
A third study (Yang, 2002) used the same dataset that Chen and Li used but estimated the ancestral effective population of 'only' ~12,000 to 21,000, using a different statistical method.[14]
The alignable sequences within genomes of humans and chimpanzees differ by about 35 million single-nucleotide substitutions. Additionally about 3% of the complete genomes differ by deletions, insertions and duplications.[15]
Since mutation rate is relatively constant, roughly one half of these changes occurred in the human lineage. Only a very tiny fraction of those fixed differences gave rise to the different phenotypes of humans and chimpanzees and finding those is a great challenge. The vast majority of the differences are neutral and do not affect the phenotype.[citation needed]
Molecular evolution may act in different ways, through protein evolution, gene loss, differential gene regulation and RNA evolution. All are thought to have played some part in human evolution.
Many different mutations can inactivate a gene, but few will change its function in a specific way. Inactivation mutations will therefore be readily available for selection to act on. Gene loss could thus be a common mechanism of evolutionary adaptation (the "less-is-more" hypothesis).[16]
80 genes were lost in the human lineage after separation from the last common ancestor with the chimpanzee. 36 of those were for olfactory receptors. Genes involved in chemoreception and immune response are overrepresented.[17] Another study estimated that 86 genes had been lost.[18]
A gene for type I hair keratin was lost in the human lineage. Keratins are a major component of hairs. Humans still have nine functional type I hair keratin genes, but the loss of that particular gene may have caused the thinning of human body hair. Based on the assumption of a constant molecular clock, the study predicts the gene loss occurred relatively recently in human evolutionless than 240 000 years ago, but both the Vindija Neandertal and the high-coverage Denisovan sequence contain the same premature stop codons as modern humans and hence dating should be greater than 750 000 years ago. [19]
Stedman et al. (2004) stated that the loss of the sarcomeric myosin gene MYH16 in the human lineage led to smaller masticatory muscles. They estimated that the mutation that led to the inactivation (a two base pair deletion) occurred 2.4 million years ago, predating the appearance of Homo ergaster/erectus in Africa. The period that followed was marked by a strong increase in cranial capacity, promoting speculation that the loss of the gene may have removed an evolutionary constraint on brain size in the genus Homo.[20]
Another estimate for the loss of the MYH16 gene is 5.3 million years ago, long before Homo appeared.[21]
Segmental duplications (SDs or LCRs) have had roles in creating new primate genes and shaping human genetic variation.
When the human genome was compared to the genomes of five comparison primate species, including the chimpanzee, gorilla, orangutan, gibbon, and macaque, it was found that there are approximately 20,000 human-specific insertions believed to be regulatory. While most insertions appear to be fitness neutral, a small amount have been identified in positively selected genes showing associations to neural phenotypes and some relating to dental and sensory perception-related phenotypes. These findings hint at the seemingly important role of human-specific insertions in the recent evolution of humans.[22]
Human accelerated regions are areas of the genome that differ between humans and chimpanzees to a greater extent than can be explained by genetic drift over the time since the two species shared a common ancestor. These regions show signs of being subject to natural selection, leading to the evolution of distinctly human traits. Two examples are HAR1F, which is believed to be related to brain development and HAR2 (a.k.a. HACNS1) that may have played a role in the development of the opposable thumb.
It has also been hypothesized that much of the difference between humans and chimpanzees is attributable to the regulation of gene expression rather than differences in the genes themselves. Analyses of conserved non-coding sequences, which often contain functional and thus positively selected regulatory regions, address this possibility.[23]
When the draft sequence of the common chimpanzee (Pan troglodytes) genome was published in the summer 2005, 2400 million bases (of ~3160 million bases) were sequenced and assembled well enough to be compared to the human genome.[15] 1.23% of this sequenced differed by single-base substitutions. Of this, 1.06% or less was thought to represent fixed differences between the species, with the rest being variant sites in humans or chimpanzees. Another type of difference, called indels (insertions/deletions) accounted for many fewer differences (15% as many), but contributed ~1.5% of unique sequence to each genome, since each insertion or deletion can involve anywhere from one base to millions of bases.[15]
A companion paper examined segmental duplications in the two genomes,[24] whose insertion and deletion into the genome account for much of the indel sequence. They found that a total of 2.7% of euchromatic sequence had been differentially duplicated in one or the other lineage.
The sequence divergence has generally the following pattern: Human-Chimp < Human-Gorilla << Human-Orangutan, highlighting the close kinship between humans and the African apes. Alu elements diverge quickly due to their high frequency of CpG dinucleotides which mutate roughly 10 times more often than the average nucleotide in the genome. The mutation rate is higher in the male germ line, therefore the divergence in the Y chromosomewhich is inherited solely from the fatheris higher than in autosomes. The X chromosome is inherited twice as often through the female germ line as through the male germ line and therefore shows slightly lower sequence divergence. The sequence divergence of the Xq13.3 region is surprisingly low between humans and chimpanzees.[25]
Mutations altering the amino acid sequence of proteins (Ka) are the least common. In fact ~29% of all orthologous proteins are identical between human and chimpanzee. The typical protein differs by only two amino acids.[15]The measures of sequence divergence shown in the table only take the substitutional differences, for example from an A (adenine) to a G (guanine), into account. DNA sequences may however also differ by insertions and deletions (indels) of bases. These are usually stripped from the alignments before the calculation of sequence divergence is performed.
An international group of scientists completed a draft sequence of the Neanderthal genome in May 2010. The results indicate some breeding between modern humans (Homo sapiens) and Neanderthals (Homo neanderthalensis), as the genomes of non-African humans have 14% more in common with Neanderthals than do the genomes of subsaharan Africans. Neanderthals and most modern humans share a lactose-intolerant variant of the lactase gene that encodes an enzyme that is unable to break down lactose in milk after weaning. Modern humans and Neanderthals also share the FOXP2 gene variant associated with brain development and with speech in modern humans, indicating that Neanderthals may have been able to speak. Chimps have two amino acid differences in FOXP2 compared with human and Neanderthal FOXP2.[26][27][28]
H. sapiens is thought to have emerged about 300,000 years ago. It dispersed throughout Africa, and after 70,000 years ago throughout Eurasia and Oceania.A 2009 study identified 14 "ancestral population clusters", the most remote being the San people of Southern Africa.[29][30]
With their rapid expansion throughout different climate zones, and especially with the availability of new food sources with the domestication of cattle and the development of agriculture, human populations have been exposed to significant selective pressures since their dispersal. For example, East Asians have been found to be separated from Europids by a number of concentrated alleles suggestive of selection pressures, including variants of the EDAR, ADH1B, ABCC1, and ALDH2genes.The East Asian types of ADH1B in particular are associated with rice domestication and would thus have arisen after the development of rice cultivation roughly 10,000 years ago.[31] Several phenotypical traits of characteristic of East Asians are due to a single mutation of the EDAR gene, dated to c. 35,000 years ago.[32]
As of 2017[update], the Single Nucleotide Polymorphism Database (dbSNP), which lists SNP and other variants, listed a total of 324 million variants found in sequenced human genomes.[33]Nucleotide diversity, the average proportion of nucleotides that differ between two individuals, is estimated at between 0.1% and 0.4% for contemporary humans (compared to 2% between humans and chimpanzees).[34][35]This corresponds to genome differences at a few million sites; the 1000 Genomes Project similarly found that "a typical [individual] genome differs from the reference human genome at 4.1 million to 5.0 million sites affecting 20 million bases of sequence."[36]
In February 2019, scientists discovered evidence, based on genetics studies using artificial intelligence (AI), that suggest the existence of an unknown human ancestor species, not Neanderthal, Denisovan or human hybrid (like Denny (hybrid hominin)), in the genome of modern humans.[37][38]
In March 2019, Chinese scientists reported inserting the human brain-related MCPH1 gene into laboratory rhesus monkeys, resulting in the transgenic monkeys performing better and answering faster on "short-term memory tests involving matching colors and shapes", compared to control non-transgenic monkeys, according to the researchers.[39][40]
Read more from the original source:
Human evolutionary genetics - Wikipedia
- June 11th At Westport, CT: Federal Red Flags, HIPAA Security Rules and Fraud Prevention [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Do not learn Dvorak! [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- You Can’t Solve Problems By Making It Illegal To Have The Problem [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- A Force Fix for Healthcare [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Yahble, HIT, Bubblecon, BIZDEV!, Solid State [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- 15 things that suck about the Palm Pre [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- What an Indie Genomics Lab Looks Like [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Practice Fusion: Class D Felony? [Last Updated On: February 26th, 2010] [Originally Added On: February 26th, 2010]
- Practice Fusion Responds [Last Updated On: March 7th, 2010] [Originally Added On: March 7th, 2010]
- Practice Fusion: Do the math: $44,000 is a LIE [Last Updated On: March 10th, 2010] [Originally Added On: March 10th, 2010]
- How Much Until Doctors Approve of 23andMe? [Last Updated On: March 10th, 2010] [Originally Added On: March 10th, 2010]
- Biochemicals as Media, Not Methods [Last Updated On: March 10th, 2010] [Originally Added On: March 10th, 2010]
- More Practice Fusion Reality Distortion [Last Updated On: March 10th, 2010] [Originally Added On: March 10th, 2010]
- Same Test Results: 23andMe is Myriad is BRCA is Medicine [Last Updated On: March 12th, 2010] [Originally Added On: March 12th, 2010]
- BRCA is 23andMe is Myriad is Medicine [Last Updated On: March 13th, 2010] [Originally Added On: March 13th, 2010]
- Getting Serious About Genomics as Common Medical Practice [Last Updated On: March 15th, 2010] [Originally Added On: March 15th, 2010]
- The New John Mackey of Genetics: Linda Avey? [Last Updated On: March 15th, 2010] [Originally Added On: March 15th, 2010]
- Keep the Medical, Well, Medical [Last Updated On: March 16th, 2010] [Originally Added On: March 16th, 2010]
- If 23andMe shuts down, it won’t be for some mundane reason like the bills weren’t paid [Last Updated On: March 16th, 2010] [Originally Added On: March 16th, 2010]
- If I Run A Medical Practice, How Do I Use A 23andMe? [Last Updated On: March 17th, 2010] [Originally Added On: March 17th, 2010]
- 23andMe Contract in Bad Faith [Last Updated On: March 19th, 2010] [Originally Added On: March 19th, 2010]
- Doctors CANNOT Use 23andMe Due To 23andMe’s Bad Faith Contract [Last Updated On: March 20th, 2010] [Originally Added On: March 20th, 2010]
- Pathway Compared to 23andMe and Navigenics [Last Updated On: March 22nd, 2010] [Originally Added On: March 22nd, 2010]
- There’s a Word for “Views Differ” When One View Is The State [Last Updated On: March 24th, 2010] [Originally Added On: March 24th, 2010]
- Association for Molecular Pathology, et al. v. USPTO, et al. – Opinion [Last Updated On: March 29th, 2010] [Originally Added On: March 29th, 2010]
- Birth of a Super Villain [Last Updated On: April 3rd, 2010] [Originally Added On: April 3rd, 2010]
- “Medical Products” like 23andMe must not become the new “Financial Products” [Last Updated On: April 4th, 2010] [Originally Added On: April 4th, 2010]
- How I Would Apply Genomic Technology In Clinical Use Today [Last Updated On: April 5th, 2010] [Originally Added On: April 5th, 2010]
- Gmail Enterprise: World’s Best EMR [Last Updated On: April 6th, 2010] [Originally Added On: April 6th, 2010]
- Brief Primer on Health Law Compliance [Last Updated On: April 9th, 2010] [Originally Added On: April 9th, 2010]
- Spoiler: You ARE the “Valids” [Last Updated On: April 9th, 2010] [Originally Added On: April 9th, 2010]
- Rachel Lehmann-Haupt Line by Line Take Down [Last Updated On: April 9th, 2010] [Originally Added On: April 9th, 2010]
- Is Medicare Bankrupt? What the Hell Is Going On? [Last Updated On: April 17th, 2010] [Originally Added On: April 17th, 2010]
- The Big Shuffle: Medicare Cuts Rates by 21.3% (but not “technically”) [Last Updated On: April 17th, 2010] [Originally Added On: April 17th, 2010]
- “Tech Hiring Binge” == “Fear for Your Job, Nerds” [Last Updated On: April 18th, 2010] [Originally Added On: April 18th, 2010]
- How Bad is Bad? $.20 on the Private Medical Insurance Dollar [Last Updated On: April 20th, 2010] [Originally Added On: April 20th, 2010]
- Update: How Bad is Bad? It Used to Be $.45 on the Medical Insurance Dollar [Last Updated On: April 20th, 2010] [Originally Added On: April 20th, 2010]
- World’s Best “EMR” for $1000: Google Spreadsheets + iPad [Last Updated On: April 21st, 2010] [Originally Added On: April 21st, 2010]
- Don’t Insult Me with your “AOL Keyword” Strategy, Google Health [Last Updated On: April 21st, 2010] [Originally Added On: April 21st, 2010]
- How to Play LAWGAMES [Last Updated On: April 23rd, 2010] [Originally Added On: April 23rd, 2010]
- Top 4 Predatory Schemes Encroaching on American Medicine: Part 1 [Last Updated On: April 25th, 2010] [Originally Added On: April 25th, 2010]
- What’s the Big Deal About iPads? [Last Updated On: April 27th, 2010] [Originally Added On: April 27th, 2010]
- Got Google Android for Google I/O [Last Updated On: April 27th, 2010] [Originally Added On: April 27th, 2010]
- Google Enterprise meets HIPAA and HITECH Compliant Laws [Last Updated On: April 29th, 2010] [Originally Added On: April 29th, 2010]
- Pixels of Accuracy CHALENGE: Diagnostic Medical Imaging [Last Updated On: April 29th, 2010] [Originally Added On: April 29th, 2010]
- 23andMe Launder AlioGenetics Doesn’t Even Bother to Remove 23andMe Logo [Last Updated On: April 30th, 2010] [Originally Added On: April 30th, 2010]
- Anthem of CT Denies $600 Until “Subscriber Responds to our Coordination of Benefits Questionnaire” [Last Updated On: May 1st, 2010] [Originally Added On: May 1st, 2010]
- Apple And Google Team Up To Launch Revolutionary Mobile Health System [Last Updated On: May 1st, 2010] [Originally Added On: May 1st, 2010]
- Funny Pictures from This Year Building the Medical Practice [Last Updated On: May 6th, 2010] [Originally Added On: May 6th, 2010]
- Remote Medical Video Monitoring on iPad and iPhone [Last Updated On: May 7th, 2010] [Originally Added On: May 7th, 2010]
- Google Calendar Overhead Waiting Room Display [Last Updated On: May 7th, 2010] [Originally Added On: May 7th, 2010]
- Various Whiteboards on Solid State Medical Operations [Last Updated On: May 7th, 2010] [Originally Added On: May 7th, 2010]
- The Raw Facts about Counsyl [Last Updated On: May 7th, 2010] [Originally Added On: May 7th, 2010]
- Brawndo: Still Mutilating Thirst, Still Not Yet Sold at the Stop-n-Shop Pharmacy [Last Updated On: May 9th, 2010] [Originally Added On: May 9th, 2010]
- Video: Google Enterprise to Outsource Medical Administration [Last Updated On: May 9th, 2010] [Originally Added On: May 9th, 2010]
- Gattaca: “The Matrix” of Genomics [Last Updated On: May 11th, 2010] [Originally Added On: May 11th, 2010]
- 23andMe Now Diagnoses Fatal Tay-Sachs Disease [Last Updated On: May 12th, 2010] [Originally Added On: May 12th, 2010]
- Why Was Pathway Targeted for FDA Enforcement and Not 23andMe? [Last Updated On: May 15th, 2010] [Originally Added On: May 15th, 2010]
- John Dolan on Aging and the Horrifying Conclusion of GWAS [Last Updated On: May 16th, 2010] [Originally Added On: May 16th, 2010]
- Sam R. Riley Wants To Tell You About Practice Fusion [Last Updated On: May 17th, 2010] [Originally Added On: May 17th, 2010]
- Response to “Genomic Medicine: Lost” [Last Updated On: May 19th, 2010] [Originally Added On: May 19th, 2010]
- Death And Taxes: CMS to IRS [Last Updated On: May 19th, 2010] [Originally Added On: May 19th, 2010]
- Please Stop Antagonizing the AMA [Last Updated On: May 26th, 2010] [Originally Added On: May 26th, 2010]
- Dan Vorhaus, Attorney At Law, Legally Advises Medical Doctors Can Use 23andMe To Provide Medical Advice [Last Updated On: May 28th, 2010] [Originally Added On: May 28th, 2010]
- Singularity Summit 2010 in San Francisco to Explore Intelligence Augmentation [Last Updated On: June 7th, 2010] [Originally Added On: June 7th, 2010]
- OpenPCR: DNA amplification for anyone [Last Updated On: June 10th, 2010] [Originally Added On: June 10th, 2010]
- FDA sends letters to 5 genetic testing companies [Last Updated On: June 11th, 2010] [Originally Added On: June 11th, 2010]
- Amazon And The NIH Team Up To Put Human Genome In The Cloud [Last Updated On: March 31st, 2012] [Originally Added On: March 31st, 2012]
- ReproSource Comments on New Study Linking Infertility to Genetics [Last Updated On: April 25th, 2012] [Originally Added On: April 25th, 2012]
- Genetics 101 Part 1: What are genes? - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Red Ice Radio - David Icke - Hour 1 - The Manipulation of Humanity - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Genetics Part 5: Human Genetic Disorders - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- C2CAM - The Nephilim, Genetic Manipulation [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Human Nature talk with Robert Sapolsky, Gabor Mate, James Gilligan, Richard Wilkinson - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Human Genetic Diseases - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Alien Scientist on Genetics, Implants [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Research and Markets: Genetics, 6th Edition International Student Version Continues To Educate Today's Students for ... [Last Updated On: May 4th, 2012] [Originally Added On: May 4th, 2012]
- Myriad Genetics to Present at the Bank of America Merrill Lynch 2012 Health Care Conference [Last Updated On: May 4th, 2012] [Originally Added On: May 4th, 2012]
- Genetics may explain some people's dislike of meat [Last Updated On: May 4th, 2012] [Originally Added On: May 4th, 2012]
- 'Blond Genes' May Vary Around the World [Last Updated On: May 4th, 2012] [Originally Added On: May 4th, 2012]