One of the greatest things about being an astrophysicist is that you keep discovering things you didnt think were possible. Now the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo Observatory have discovered their largest black hole yet. Its important because scientists had in fact doubted whether black holes of this mass could even exist.
After months of painstaking analysis, the team has just reported their discovery in papers in the Physical Review Letters and the Astrophysical Journal Letters.
The black hole was discovered because its merger with a slightly less massive companion emitted gravitational waves. These are ripples in spacetime that can be detected on Earth the echoes of violent cosmic collisions that, in this case, happened billions of years ago.
The finding is hugely important from a research perspective. It also settles a bet among astrophysicists. In February 2017, a number of us met at the Aspen Center for Physics in Colorado, USA. We were excited to be discussing the results that we already had from LIGO. But we were also looking forward to future discoveries and arguing about how pairs of black holes actually merge.
There were multiple ideas under discussion. One was that pairs of massive stars gradually evolve side by side until both collapse into black holes and ultimately merge. Another was that previously unacquainted black holes can be brought together by the jostling of a crowd of other stars in dense stellar regions. But which is the main process? I got several participants together to make a wager, as shown on the photo below.
Sourav Chatterjee (now at Tata. Institute of Fundamental Research, India); Carl Rodriguez (Carnegie Mellon University, USA); me; Daniel Holz (University of Chicago, USA); Chris Belczynski (Nicolaus Copernicus Astronomical Center, Poland). Author provided
At the end of their lives when stars run out of nuclear fuel and no longer have the support pressure to counter their own gravity they collapse. Low-mass stars, including our Sun, eventually become faint stellar ghosts known as white dwarfs. Stars that started out heavier than about eight times the mass of the Sun become incredibly dense and small objects called neutron stars. And really massive stars of more than 20 solar masses at birth become black holes, with final masses between a few and around 40 solar masses.
But something weird has long been conjectured to happen to very, very massive stars, perhaps those with initial masses between around 130 and 250 solar masses, whose centres get really hot (around a billion degrees Kelvin) late in their evolution. The light bouncing around inside these stars, and providing much of the pressure support, is so energetic that it can transform into pairs of electrons and positrons (positrons are the antimatter counterparts of electron they are nearly identical but have opposite charge).
This, in turn, makes the star unstable: the pressure suddenly drops, the centre of the star contracts and heats up, and runaway nuclear fusion causes the entire star to explode in a bright pair-instability supernova, leaving no remnant behind.
This means that, if all black holes in merging pairs were created by collapsing stars, there should be no black holes with masses between around 55 and 130 solar masses the stars that could have produced such remnants would have ended their lives in explosions that leave nothing behind. More massive black holes, however, can be formed from even heavier stars (of more than 250 solar masses) which do not undergo the same runaway nuclear fusion, and collapse completely into black holes.
But this wouldnt be the case for black holes merging in a crowd. When two black holes merge, they create another black hole, almost as heavy as the sum of their masses. If this black hole remains in the dense environment it can merge again, giving rise to even more massive black holes of a range of sizes, filling in the mass gap. This is what brought us to signing this bet in Aspen: would we find a merging black hole with mass between around 55 and 130 solar masses or not?
GW190521 is a merger of two very massive black holes indeed, the heaviest of any observed so far through gravitational waves. The heavier one, measured to be between 71 and 106 solar masses (at 90 per cent confidence), falls squarely into the mass gap. This seems to suggest that black holes do indeed repeatedly merge.
The merged hole had a final mass of 142 times that of the sun, making it the largest of its kind observed in gravitational waves to date. LIGO/Caltech/MIT/R. Hurt (IPAC).
I was not involved in this marvellous measurement. But by afortuitous coincidence I had the opportunity to referee one of the discovery papers, meaning that I am now well-prepared to perform my duties as arbiter of the bet. My first order of business is to adjudicate the wager in favour of Chatterjee and Rodriguez as well as Fred Rasio of Northwestern University, US, who joined the ultimate winners in an addendum after the original bet was signed.
The bet. Author provided
Congratulations to the deserved winners and may they enjoy the wineowed to them, and the pleasure of being proved right. The bet being resolved, my next to-do item, along with many other astrophysicists around the world, is to start thinking about the implications of this revolutionary observation.
Is this the definitive demonstration of black holes merging repeatedly in a dense cluster of stars? Could we have incorrectly estimated the boundaries of the mass gap because of uncertainty in key nuclear reactions? Could the merger have happened in completely different ways we havent even thought of?
The LIGO-Virgo teams have yet again done an amazing job with theirinstruments and data analysis, obtaining a wonderfully unexpected result.For the rest of the astrophysics community, the fun of making sense of it is only just beginning. Which is why, in such scientific bets, everybody really is a winner.
Ilya Mandel, Honorary Professor of Theoretical Astrophysics, University of Birmingham
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Read more from the original source:
Astronomers Spot a Black Hole so Massive They Werent Sure it Could Exist - Gizmodo Australia
- Rotational spectra of isotopic species of methyl cyanide, CH_3CN, in their ground vibrational states up to terahertz frequencies [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Cosmological parameter extraction and biases from type Ia supernova magnitude evolution [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Continuous monitoring of pulse period variations in Hercules X-1 using Swift/BAT [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Constraining the ortho-to-para ratio of H{_2} with anomalous H{_2}CO absorption [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- A photometric and spectroscopic study of the new dwarf spheroidal galaxy in Hercules - Metallicity, velocities, and a clean list of RGB members [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Luminosities and mass-loss rates of SMC and LMC AGB stars and red supergiants [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Electron beam – plasma system with the return current and directivity of its X-ray emission [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The propagation of the shock wave from a strong explosion in a plane-parallel stratified medium: the Kompaneets approximation [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Analysis of hydrogen-rich magnetic white dwarfs detected in the Sloan Digital Sky Survey [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Letter: Centaurus A as TeV \gamma-ray and possible UHE cosmic-ray source [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Young pre-low-mass X-ray binaries in the propeller phase - Nature of the 6.7-h periodic X-ray source 1E 161348-5055 in RCW 103 [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Radiative rates and electron impact excitation rates for transitions in Cr VIII [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Solar granulation from photosphere to low chromosphere observed in Ba II 4554 Å line [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Does the HD 209458 planetary system pose a challenge to the stellar atmosphere models? [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Effect of asymmetry of the radio source distribution on the apparent proper motion kinematic analysis [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Destriping CMB temperature and polarization maps [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Search for cold debris disks around M-dwarfs. II [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Precise data on Leonid fireballs from all-sky photographic records [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- An X-ray view of 82 LINERs with Chandra and XMM-Newton data [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Radio observations of ZwCl 2341.1+0000: a double radio relic cluster [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Candidate free-floating super-Jupiters in the young \sigma Orionis open cluster [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The metallicity gradient as a tracer of history and structure: the Magellanic Clouds and M33 galaxies [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- XMMSL1 J060636.2-694933: an XMM-Newton slew discovery and Swift/Magellan follow up of a new classical nova in the LMC [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The inner rim structures of protoplanetary discs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The solar Ba{\sf II} 4554 Å line as a Doppler diagnostic: NLTE analysis in 3D hydrodynamical model [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Magnetic evolution of superactive regions - Complexity and potentially unstable magnetic discontinuities [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Low-mass protostars and dense cores in different evolutionary stages in IRAS 00213+6530 [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- PMAS optical integral field spectroscopy of luminous infrared galaxies - I. The atlas [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- First AGILE catalog of high-confidence gamma-ray sources [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Radiative hydrodynamics simulations of red supergiant stars - I. interpretation of interferometric observations [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Extrasolar planets and brown dwarfs around A–F type stars - VII. \theta Cygni radial velocity variations: planets or stellar phenomenon? [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253 - II. The magnetic field structure [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Physical structure and water line spectrum predictions of the intermediate mass protostar OMC2-FIR4 [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The bright galaxy population of five medium redshift clusters - II. Quantitative galaxy morphology [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Dust in brown dwarfs and extra-solar planets - II. Cloud formation for cosmologically evolving abundances [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The quiet Sun magnetic field observed with ZIMPOL on THEMIS - I. The probability density function [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Complexity in the sunspot cycle [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Properties and nature of Be stars - 26. Long-term and orbital changes of \zeta Tauri [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The massive Wolf-Rayet binary LSS 1964 (=WR 29) - II. The V light curve [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Supernova progenitor stars in the initial range of 23 to 33 solar masses and their relation with the SNR Cassiopeia A [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Hertzsprung-Russell Diagram of Star Clusters [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Table of the 10 Brightest stars within 10 Parsecs of the Sun [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Hertzsprung-Russell Diagram of the Nearest Stars [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Magnitude and Color in Astronomy [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Stellar Types [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Brown Dwarfs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Spotting the Minimum [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Structure and Evolution of Brown Dwarfs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- No Bang from the Big Bang Machine [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Sizes of the Stars and the Planets [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- An Implausible Light Thrust [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- the Masses of Degenerate Objects [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Degeneracy Pressure [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Introduction to Degenerate Objects [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Radii of Degenerate Objects [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Inevitability of Black Holes [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Scientific Pig-Out [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Neutrino Cooling of Degenerate Dwarfs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Neutrino Cooling of Neutron Stars [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Overview of Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Energetics of Thermonuclear Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Thermonuclear Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Nuclear Reactions in Thermonuclear Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Core-Collapse Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Neutrinos and SN 1987A [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Revealing the sub-AU asymmetries of the inner dust rim in the disk around the Herbig Ae star R Coronae Austrinae [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Probing the dust properties of galaxies up to submillimetre wavelengths - I. The spectral energy distribution of dwarf galaxies using LABOCA [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- On the physical origin of the second solar spectrum of the Sc II line at 4247 Å [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- On detecting the large separation in the autocorrelation of stellar oscillation times series [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Imaging the spotty surface of Betelgeuse in the H band [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Chandra observation of Cepheus A: the diffuse emission of HH 168 resolved [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- A planetary eclipse map of CoRoT-2a - Comprehensive lightcurve modeling combining rotational-modulation and transits [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- The chemical composition of carbon stars. The R-type stars [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Flow instabilities of magnetic flux tubes - IV. Flux storage in the solar overshoot region [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Fragmentation of a dynamically condensing radiative layer [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Temporal variations of the CaXIX spectra in solar flares [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Deuterium chemistry in the Orion Bar PDR - “Warm” chemistry starring CH_{2}D^+ [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Metal abundances in the cool cores of galaxy clusters [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- The nature of the X-ray binary IGR J19294+1816 from INTEGRAL, RXTE, and Swift observations [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Relating basic properties of bright early-type dwarf galaxies to their location in Abell 901/902 [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]