Sequence of infrared images of the lower clouds on Venus, showing a consistent pattern of a planetary-scale cloud discontinuity. This type of giant atmospheric wave has never been before on any other planets in our solar system. Image via Javier Peralta/ JAXA-Planet-C team/ Astrophysics and Space Sciences.
EarthSkys yearly crowd-funding campaign is in progress. In 2020, we are donating 8.5% of all incoming revenues to No Kids Hungry. Click to learn more and donate.
Scientists have announced something new and unexpected: a giant atmospheric wave or disruption in Venus lower atmosphere. Its unlike anything else seen in the solar system. The researchers say it has been rapidly moving at about 30 miles (50 km) above the planets surface for at least 35 years. It went completely undetected until now.
The amazing discovery is reported in a new peer-reviewed study, published May 27, 2020, inGeophysical Research Letters.
Venus is the planet next-inward to the sun from Earth. Its completely covered by thick clouds. These clouds are so dense that we cant peer beneath them to view Venus surface. For this reason, the lower atmosphere and surface of Venus have remained largely mysterious. We know the clouds of Venus consist mostly of carbon dioxide, with droplets of sulphuric acid. Strong wind patterns have been observed before in the atmosphere of Venus in ultraviolet and infrared light.
The new atmospheric feature a giant wall of acidic clouds is different from previous observations in part because its the first huge atmospheric wave found at the lower cloud level in Venus atmosphere, at altitudes between 29.5 and 35 miles (47.5 and 56.5 km). This wall of clouds is massive, extending as far as 4,700 miles (7,500 km) across the equator of Venus, from 30 degrees north to 40 degrees south.
According to the researchers, it rotates around the planet in five days, at about 204 miles per hour (328 kph). Its been doing that since at least 1983.
The Japanese space agency JAXAsVenus orbiter Akatsuki made the discovery. The phenomenon looked like an atmospheric wave, only much larger than whats typically seen. It was found by Akatsuki as the spacecraft acquired detailed infrared images of Venus nightside, studying the mid and lower layers of the planets atmosphere.
Animation showing Venuss lower clouds (about 30 miles/ 50 km above the surface) in infrared light. Bright clouds are more transparent to thermal radiation emitted from the ground than darker clouds. Image via Javier Peralta/ JAXA-Planet C team/ Astrophysics and Space Sciences.
Pedro Machado of theInstitute of Astrophysics and Space Sciences, part of theUniversity of Lisbon in Portugal said in a statement:
If this happened on Earth, this would be a frontal surface at the scale of the planet, and thats incredible. Under the follow-up campaign, we went back to images I took in the infrared in 2012 with the Galileo National Telescope in the Canary Islands, and we found precisely the same disruption.
TheInstitute of Astrophysics and Space Sciences has had a long-running research program studying Venus winds. It also contributed follow-up observations with NASAs Infrared Telescope Facility in Hawaii, coordinated with the new observations from Akatsuki.
Huge cloud patterns have been observed before in Venus atmosphere, such as the Y wave, a dark Y-shaped structure found in the upper atmosphere that covers nearly the whole planetary disk. It is only visible when observed in ultraviolet light. There is also a 6,200-mile-long (10,000-km-long) bow-shaped stationary wave, also in the upper clouds layers, thought to be caused by the planets huge mountain ranges.
Meanwhile, in visible light, Venus dense atmosphere looks very bland.
Example of undulations behind the atmospheric discontinuity on the night side of Venus on April 15, 2016. Image via Javier Peralta/ JAXA-Planet C team/ Astrophysics and Space Sciences.
Pattern of cloud disruption seen in infrared images taken by the Japanese space agency JAXA Akatsuki Venus orbiter in 2016. Image via Javier Peralta/ JAXA-Planet C team/ Astrophysics and Space Sciences.
Finding this phenomenon in the lower atmosphere is interesting, not only because it wasnt noticed before, but also because this region in the atmosphere of Venus is thought to be responsible for the planets hellish greenhouse effect. This effect causes the heat of the sun to be retained near Venus surface. It keeps the surface at a sizzling temperature of 869 degrees Fahrenheit (465 degrees Celsius), hot enough to melt lead. The dynamics of Venus atmosphere are still not well understood overall, so planetary-scale waves such as this might help scientists better understand how the planets surface and atmosphere interact.
Javier Peralta, who led the new study, said:
Since the disruption cannot be observed in the ultraviolet images sensing the top of the clouds at about 43-mile (70-km) height, confirming its wave nature is of critical importance. We would have finally found a wave transporting momentum and energy from the deep atmosphere and dissipating before arriving at the top of the clouds. It would therefore be depositing momentum precisely at the level where we observe the fastest winds of the so-called atmospheric super-rotation of Venus, whose mechanisms have been a long-time mystery.
Ultraviolet image of the Y wave in Venus upper atmosphere, from the Pioneer Venus Orbiter on February 26, 1979. Image via NASA/ Astronomy Now.
The bow-shaped atmospheric wave in Venus upper atmosphere, as seen by Akatsuki in 2015. It is thought to be caused by Venus massive mountain ranges. Image via JAXA/ Science Alert.
Artists illustration of Akatsuki orbiting Venus. Image via ISAS/ JAXA.
This newly discovered cloud front on Venus is essentially meteorological. Basically, were talking here about the weather on Venus. The feature appears to be unique; its never been seen before on any other planets in the solar system. Its therefore difficult to know for certain what is happening, even though the researchers have devised computer simulations to try to mimic the cloud feature. The mechanisms that can create such a giant and long-lasting atmospheric wave are still unknown.
One possibility is that this atmospheric disruption may be a physical manifestation of a type of Kelvin wave,a class of atmospheric gravity wave that shares some important common features with this disruption. Kelvin waves can maintain their shape over long periods of time, and in this case, propagate in the same direction as Venus super-rotating winds. Kelvin waves can also interact with other types of atmospheric waves, such as Rossby waves, which naturally occur as a result of the rotation of the planet. Like Kelvin waves, they can be seen in both atmospheres and oceans. On Venus, they may transport energy from the super-rotation of the atmosphere where the atmosphere rotates faster than the planet itself to the equator.
The researchers looked at images of Venus going as far back as 1983. They were able to confirm the presence of the same features that were seen by Akatsuki. But how did this particular and huge wind formation go unnoticed for so long? According to Machado:
we needed access to a large, growing and scattered collection of images of Venus gathered in the recent decades with different telescopes.
Javier Peralta, a team member of the Akatsuki mission who led the new study. Image via The Planetary Society.
Finding such a large atmospheric phenomenon on Venus, after its being undetected for so long, was a big surprise for scientists. The discovery will help them learn more about the planets complex atmosphere and how it interacts with the planet itself.
Bottom line: Researchers have discovered a giant atmospheric wave-like phenomenon in Venus lower atmosphere, something not seen anywhere else in the solar system.
Source: A Long-Lived Sharp Disruption on the Lower Clouds of Venus
Via Institute of Astrophysics and Space Sciences
Via Institute of Space and Astronautical Science
Read the rest here:
A deep, giant cloud disruption found on Venus - EarthSky
- Rotational spectra of isotopic species of methyl cyanide, CH_3CN, in their ground vibrational states up to terahertz frequencies [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Cosmological parameter extraction and biases from type Ia supernova magnitude evolution [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Continuous monitoring of pulse period variations in Hercules X-1 using Swift/BAT [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Constraining the ortho-to-para ratio of H{_2} with anomalous H{_2}CO absorption [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- A photometric and spectroscopic study of the new dwarf spheroidal galaxy in Hercules - Metallicity, velocities, and a clean list of RGB members [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Luminosities and mass-loss rates of SMC and LMC AGB stars and red supergiants [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Electron beam – plasma system with the return current and directivity of its X-ray emission [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The propagation of the shock wave from a strong explosion in a plane-parallel stratified medium: the Kompaneets approximation [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Analysis of hydrogen-rich magnetic white dwarfs detected in the Sloan Digital Sky Survey [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Letter: Centaurus A as TeV \gamma-ray and possible UHE cosmic-ray source [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Young pre-low-mass X-ray binaries in the propeller phase - Nature of the 6.7-h periodic X-ray source 1E 161348-5055 in RCW 103 [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Radiative rates and electron impact excitation rates for transitions in Cr VIII [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Solar granulation from photosphere to low chromosphere observed in Ba II 4554 Å line [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Does the HD 209458 planetary system pose a challenge to the stellar atmosphere models? [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Effect of asymmetry of the radio source distribution on the apparent proper motion kinematic analysis [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Destriping CMB temperature and polarization maps [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Search for cold debris disks around M-dwarfs. II [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Precise data on Leonid fireballs from all-sky photographic records [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- An X-ray view of 82 LINERs with Chandra and XMM-Newton data [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Radio observations of ZwCl 2341.1+0000: a double radio relic cluster [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Candidate free-floating super-Jupiters in the young \sigma Orionis open cluster [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The metallicity gradient as a tracer of history and structure: the Magellanic Clouds and M33 galaxies [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- XMMSL1 J060636.2-694933: an XMM-Newton slew discovery and Swift/Magellan follow up of a new classical nova in the LMC [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The inner rim structures of protoplanetary discs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The solar Ba{\sf II} 4554 Å line as a Doppler diagnostic: NLTE analysis in 3D hydrodynamical model [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Magnetic evolution of superactive regions - Complexity and potentially unstable magnetic discontinuities [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Low-mass protostars and dense cores in different evolutionary stages in IRAS 00213+6530 [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- PMAS optical integral field spectroscopy of luminous infrared galaxies - I. The atlas [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- First AGILE catalog of high-confidence gamma-ray sources [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Radiative hydrodynamics simulations of red supergiant stars - I. interpretation of interferometric observations [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Extrasolar planets and brown dwarfs around A–F type stars - VII. \theta Cygni radial velocity variations: planets or stellar phenomenon? [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253 - II. The magnetic field structure [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Physical structure and water line spectrum predictions of the intermediate mass protostar OMC2-FIR4 [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The bright galaxy population of five medium redshift clusters - II. Quantitative galaxy morphology [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Dust in brown dwarfs and extra-solar planets - II. Cloud formation for cosmologically evolving abundances [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The quiet Sun magnetic field observed with ZIMPOL on THEMIS - I. The probability density function [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Complexity in the sunspot cycle [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Properties and nature of Be stars - 26. Long-term and orbital changes of \zeta Tauri [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The massive Wolf-Rayet binary LSS 1964 (=WR 29) - II. The V light curve [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Supernova progenitor stars in the initial range of 23 to 33 solar masses and their relation with the SNR Cassiopeia A [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Hertzsprung-Russell Diagram of Star Clusters [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Table of the 10 Brightest stars within 10 Parsecs of the Sun [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Hertzsprung-Russell Diagram of the Nearest Stars [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Magnitude and Color in Astronomy [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Stellar Types [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Brown Dwarfs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Spotting the Minimum [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Structure and Evolution of Brown Dwarfs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- No Bang from the Big Bang Machine [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Sizes of the Stars and the Planets [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- An Implausible Light Thrust [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- the Masses of Degenerate Objects [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Degeneracy Pressure [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Introduction to Degenerate Objects [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Radii of Degenerate Objects [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Inevitability of Black Holes [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Scientific Pig-Out [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Neutrino Cooling of Degenerate Dwarfs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Neutrino Cooling of Neutron Stars [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Overview of Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Energetics of Thermonuclear Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Thermonuclear Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Nuclear Reactions in Thermonuclear Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Core-Collapse Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Neutrinos and SN 1987A [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Revealing the sub-AU asymmetries of the inner dust rim in the disk around the Herbig Ae star R Coronae Austrinae [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Probing the dust properties of galaxies up to submillimetre wavelengths - I. The spectral energy distribution of dwarf galaxies using LABOCA [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- On the physical origin of the second solar spectrum of the Sc II line at 4247 Å [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- On detecting the large separation in the autocorrelation of stellar oscillation times series [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Imaging the spotty surface of Betelgeuse in the H band [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Chandra observation of Cepheus A: the diffuse emission of HH 168 resolved [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- A planetary eclipse map of CoRoT-2a - Comprehensive lightcurve modeling combining rotational-modulation and transits [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- The chemical composition of carbon stars. The R-type stars [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Flow instabilities of magnetic flux tubes - IV. Flux storage in the solar overshoot region [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Fragmentation of a dynamically condensing radiative layer [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Temporal variations of the CaXIX spectra in solar flares [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Deuterium chemistry in the Orion Bar PDR - “Warm” chemistry starring CH_{2}D^+ [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Metal abundances in the cool cores of galaxy clusters [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- The nature of the X-ray binary IGR J19294+1816 from INTEGRAL, RXTE, and Swift observations [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Relating basic properties of bright early-type dwarf galaxies to their location in Abell 901/902 [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]