Artists interpretation of the calcium-rich supernova 2019ehk. Shown in orange is the calcium-rich material created in the explosion. Purple coloring represents gas shed by the star right before the explosion, which then produced bright X-ray emission when the material collided with the supernova shockwave. Credit: Aaron M. Geller/Northwestern University
Calcium-rich supernova examined with X-rays for first time.
Half of all the calcium in the universe including the very calcium in our teeth and bones was created in the last gasp of dying stars.
Called calcium-rich supernovae, these stellar explosions are so rare that astrophysicists have struggled to find and subsequently study them. The nature of these supernovae and their mechanism for creating calcium, therefore, have remained elusive.
Now a Northwestern University-led team has potentially uncovered the true nature of these rare, mysterious events. For the first time ever, the researchers examined a calcium-rich supernova with X-ray imaging, which provided an unprecedented glimpse into the star during the last month of its life and ultimate explosion.
The new findings revealed that a calcium-rich supernova is a compact star that sheds an outer layer of gas during the final stages of its life. When the star explodes, its matter collides with the loose material in that outer shell, emitting bright X-rays. The overall explosion causes intensely hot temperatures and high pressure, driving a chemical reaction that produces calcium.
These events are so few in number that we have never known what produced calcium-rich supernova, said Wynn Jacobson-Galan, a first-year Northwestern graduate student who led the study. By observing what this star did in its final month before it reached its critical, tumultuous end, we peered into a place previously unexplored, opening new avenues of study within transient science.
Before this event, we had indirect information about what calcium-rich supernovae might or might not be, said Northwesterns Raffaella Margutti, a senior author of the study. Now, we can confidently rule out several possibilities.
The research will be published today (August 5, 2020) in The Astrophysical Journal. Nearly 70 co-authors from more than 15 countries contributed to the paper.
Margutti is an assistant professor of physics and astronomy in Northwesterns Weinberg College of Arts and Sciences and a member of CIERA (Center for Interdisciplinary Exploration and Research in Astrophysics). Jacobson-Galan is an NSF Graduate Research Fellow in Marguttis transients research group.
Amateur astronomer Joel Shepherd first spotted the bright burst, dubbed SN2019ehk, while stargazing in Seattle. On April 28, 2019, Shepherd used his new telescope to view Messier 100 (M100), a spiral galaxy located 55 million light years from Earth. The next day, a bright orange dot appeared in the frame. Shepherd reported the anomaly to a community astronomical survey.
As soon as the world knew that there was a potential supernova in M100, a global collaboration was ignited, Jacobson-Galan said. Every single country with a prominent telescope turned to look at this object.
This included leading observatories in the United States such as NASAs Swift Satellite, W.M. Keck Observatory in Hawaii and the Lick Observatory in California. The Northwestern team, which has remote access to Keck, was one of the many teams worldwide who triggered its telescopes to examine SN2019ehk in optical wavelengths. University of California Santa Barbara graduate student Daichi Hiramatsu was the first to trigger Swift to study SN2019ehk in the X-ray and ultraviolet. Hiramatsu also is a staff scientist at Las Cumbres Observatory, which played a crucial role in monitoring the long-term evolution of this supernova with its global telescope network.
The worldwide follow-up operation moved so quickly that the supernova was observed just 10 hours after explosion. The X-ray emission detected with Swift only lingered for five days and then completely disappeared.
In the world of transients, we have to discover things very, very fast before they fade, Margutti said. Initially, no one was looking for X-rays. Daichi noticed something and alerted us to the strange appearance of what looked like X-rays. We looked at the images and realized something was there. It was much more luminous than anybody would have ever thought. There were no preexisting theories that predicted calcium-rich transients would be so luminous in X-ray wavelengths.
While all calcium comes from stars, calcium-rich supernovae pack the most powerful punch. Typical stars create small amounts of calcium slowly through burning helium throughout their lives. Calcium-rich supernovae, on the other hand, produce massive amounts of calcium within seconds.
The explosion is trying to cool down, Margutti explained. It wants to give away its energy, and calcium emission is an efficient way to do that.
Using Keck, the Northwestern team discovered that SN 2019ehk emitted the most calcium ever observed in a singular astrophysical event.
It wasnt just calcium rich, Margutti said. It was the richest of the rich.
SN2019ehks brief luminosity told another a story about its nature. The Northwestern researchers believe that the star shed an outer layer of gas in its final days. When the star exploded, its material collided with this outer layer to produce a bright, energetic burst of X-rays.
The luminosity tells us how much material the star shed and how close that material was to the star, Jacobson-Galan said. In this case, the star lost a very small amount of material right before it exploded. That material was still nearby.
Although the Hubble Space Telescope had been observing M100 for the past 25 years, the powerful device never registered the star which was experiencing its final evolution responsible for SN2019ehk. The researchers used the Hubble images to examine the supernova site before the explosion occurred and say this is yet another clue to the stars true nature.
It was likely a white dwarf or very low-mass massive star, Jacobson-Galan said. Both of those would be very faint.
Without this explosion, you wouldnt know that anything was ever there, Margutti added. Not even Hubble could see it.
###
Reference: SN2019ehk: A double-peaked Ca-rich transient with luminous X-ray emission and shock-ionized spectral features by Wynn V. Jacobson-Galn, Raffaella Margutti, Charles D. Kilpatrick, Daichi Hiramatsu, Hagai Perets, David Khatami, Ryan J. Foley, John Raymond, Sung-Chul Yoon, Alexey Bobrick, Yossef Zenati, Llus Galbany, Jennifer Andrews, Peter J. Brown, Rgis Cartier, Deanne L. Coppejans, Georgios Dimitriadis, Matthew Dobson, Aprajita Hajela, D. Andrew Howell, Hanindyo Kuncarayakti, Danny Milisavljevic, Mohammed Rahman, Csar Rojas-Bravo, David J. Sand, Joel Shepherd, Stephen J. Smartt, Holland Stacey, Michael Stroh, Jonathan J. Swift, Giacomo Terreran, Jozsef Vinko, Xiaofeng Wang, Joseph P. Anderson, Edward A. Baron, Edo Berger, Peter K. Blanchard, Jamison Burke, David A. Coulter, Lindsay DeMarchi, James M. DerKacy, Christoffer Fremling, Sebastian Gomez, Mariusz Gromadzki, Griffin Hosseinzadeh, Daniel Kasen, Levente Kriskovics, Curtis McCully, Toms E. Mller-Bravo, Matt Nicholl, Andrs Ordasi, Craig Pellegrino, Anthony L. Piro, Andrs Pl, Juanjuan Ren, Armin Rest, R. Michael Rich, Hanna Sai, Krisztin Srneczky, Ken J. Shen, Philip Short, Matthew R. Siebert, Candice Stauffer, Rbert Szakts, Xinhan Zhang, Jujia Zhang and Kaicheng Zhang, 5 August 2020, The Astrophysical Journal.DOI: 10.3847/1538-4357/ab9e66
The study, SN2019ehk: A double-peaked Ca-rich transient with luminous X-ray emission and shock-ionized spectral features, was supported by the National Science Foundation (award numbers DGE-1842165, PHY-1748958 and AST-1909796.)
Read more:
- Rotational spectra of isotopic species of methyl cyanide, CH_3CN, in their ground vibrational states up to terahertz frequencies [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Cosmological parameter extraction and biases from type Ia supernova magnitude evolution [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Continuous monitoring of pulse period variations in Hercules X-1 using Swift/BAT [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Constraining the ortho-to-para ratio of H{_2} with anomalous H{_2}CO absorption [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- A photometric and spectroscopic study of the new dwarf spheroidal galaxy in Hercules - Metallicity, velocities, and a clean list of RGB members [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Luminosities and mass-loss rates of SMC and LMC AGB stars and red supergiants [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Electron beam – plasma system with the return current and directivity of its X-ray emission [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The propagation of the shock wave from a strong explosion in a plane-parallel stratified medium: the Kompaneets approximation [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Analysis of hydrogen-rich magnetic white dwarfs detected in the Sloan Digital Sky Survey [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Letter: Centaurus A as TeV \gamma-ray and possible UHE cosmic-ray source [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Young pre-low-mass X-ray binaries in the propeller phase - Nature of the 6.7-h periodic X-ray source 1E 161348-5055 in RCW 103 [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Radiative rates and electron impact excitation rates for transitions in Cr VIII [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Solar granulation from photosphere to low chromosphere observed in Ba II 4554 Å line [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Does the HD 209458 planetary system pose a challenge to the stellar atmosphere models? [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Effect of asymmetry of the radio source distribution on the apparent proper motion kinematic analysis [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Destriping CMB temperature and polarization maps [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Search for cold debris disks around M-dwarfs. II [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Precise data on Leonid fireballs from all-sky photographic records [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- An X-ray view of 82 LINERs with Chandra and XMM-Newton data [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Radio observations of ZwCl 2341.1+0000: a double radio relic cluster [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Candidate free-floating super-Jupiters in the young \sigma Orionis open cluster [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The metallicity gradient as a tracer of history and structure: the Magellanic Clouds and M33 galaxies [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- XMMSL1 J060636.2-694933: an XMM-Newton slew discovery and Swift/Magellan follow up of a new classical nova in the LMC [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The inner rim structures of protoplanetary discs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The solar Ba{\sf II} 4554 Å line as a Doppler diagnostic: NLTE analysis in 3D hydrodynamical model [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Magnetic evolution of superactive regions - Complexity and potentially unstable magnetic discontinuities [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Low-mass protostars and dense cores in different evolutionary stages in IRAS 00213+6530 [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- PMAS optical integral field spectroscopy of luminous infrared galaxies - I. The atlas [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- First AGILE catalog of high-confidence gamma-ray sources [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Radiative hydrodynamics simulations of red supergiant stars - I. interpretation of interferometric observations [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Extrasolar planets and brown dwarfs around A–F type stars - VII. \theta Cygni radial velocity variations: planets or stellar phenomenon? [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253 - II. The magnetic field structure [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Physical structure and water line spectrum predictions of the intermediate mass protostar OMC2-FIR4 [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The bright galaxy population of five medium redshift clusters - II. Quantitative galaxy morphology [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Dust in brown dwarfs and extra-solar planets - II. Cloud formation for cosmologically evolving abundances [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The quiet Sun magnetic field observed with ZIMPOL on THEMIS - I. The probability density function [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Complexity in the sunspot cycle [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Properties and nature of Be stars - 26. Long-term and orbital changes of \zeta Tauri [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The massive Wolf-Rayet binary LSS 1964 (=WR 29) - II. The V light curve [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Supernova progenitor stars in the initial range of 23 to 33 solar masses and their relation with the SNR Cassiopeia A [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Hertzsprung-Russell Diagram of Star Clusters [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Table of the 10 Brightest stars within 10 Parsecs of the Sun [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Hertzsprung-Russell Diagram of the Nearest Stars [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Magnitude and Color in Astronomy [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Stellar Types [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Brown Dwarfs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Spotting the Minimum [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Structure and Evolution of Brown Dwarfs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- No Bang from the Big Bang Machine [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Sizes of the Stars and the Planets [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- An Implausible Light Thrust [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- the Masses of Degenerate Objects [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Degeneracy Pressure [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Introduction to Degenerate Objects [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Radii of Degenerate Objects [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Inevitability of Black Holes [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Scientific Pig-Out [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Neutrino Cooling of Degenerate Dwarfs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Neutrino Cooling of Neutron Stars [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Overview of Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Energetics of Thermonuclear Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Thermonuclear Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Nuclear Reactions in Thermonuclear Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Core-Collapse Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Neutrinos and SN 1987A [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Revealing the sub-AU asymmetries of the inner dust rim in the disk around the Herbig Ae star R Coronae Austrinae [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Probing the dust properties of galaxies up to submillimetre wavelengths - I. The spectral energy distribution of dwarf galaxies using LABOCA [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- On the physical origin of the second solar spectrum of the Sc II line at 4247 Å [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- On detecting the large separation in the autocorrelation of stellar oscillation times series [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Imaging the spotty surface of Betelgeuse in the H band [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Chandra observation of Cepheus A: the diffuse emission of HH 168 resolved [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- A planetary eclipse map of CoRoT-2a - Comprehensive lightcurve modeling combining rotational-modulation and transits [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- The chemical composition of carbon stars. The R-type stars [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Flow instabilities of magnetic flux tubes - IV. Flux storage in the solar overshoot region [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Fragmentation of a dynamically condensing radiative layer [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Temporal variations of the CaXIX spectra in solar flares [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Deuterium chemistry in the Orion Bar PDR - “Warm” chemistry starring CH_{2}D^+ [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Metal abundances in the cool cores of galaxy clusters [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- The nature of the X-ray binary IGR J19294+1816 from INTEGRAL, RXTE, and Swift observations [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Relating basic properties of bright early-type dwarf galaxies to their location in Abell 901/902 [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]