Potential new class of drugs blocks nerve cell death

Public release date: 1-Oct-2012 [ | E-mail | Share ]

Contact: Jennifer Brown jennifer-l-brown@uiowa.edu 319-356-7124 University of Iowa Health Care

Diseases that progressively destroy nerve cells in the brain or spinal cord, such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), are devastating conditions with no cures.

Now, a team that includes a University of Iowa researcher has identified a new class of small molecules, called the P7C3 series, which block cell death in animal models of these forms of neurodegenerative disease. The P7C3 series could be a starting point for developing drugs that might help treat patients with these diseases. These findings are reported in two new studies published the week of Oct. 1 in PNAS Early Edition.

"We believe that our strategy for identifying and testing these molecules in animal models of disease gives us a rational way to develop a new class of neuroprotective drugs, for which there is a great, unmet need," says Andrew Pieper, M.D., Ph.D., associate professor of psychiatry at the UI Carver College of Medicine, and senior author of the two studies.

About six years ago, Pieper, then at the University of Texas Southwestern Medical Center, and his colleagues screened thousands of compounds in living mice in search of small, drug-like molecules that could boost production of neurons in a region of the brain called the hippocampus. They found one compound that appeared to be particularly successful and called it P7C3.

"We were interested in the hippocampus because new neurons are born there every day. But, this neurogenesis is dampened by certain diseases and also by normal aging," Pieper explains. "We were looking for small drug-like molecules that might enhance production of new neurons and help maintain proper functioning in the hippocampus."

However, when the researchers looked more closely at P7C3, they found that it worked by protecting the newborn neurons from cell death. That finding prompted them to ask whether P7C3 might also protect existing, mature neurons in other regions of the nervous system from dying as well, as occurs in neurodegenerative disease.

Using mouse and worm models of PD and a mouse model of ALS, the research team has now shown that P7C3 and a related, more active compound, P7C3A20, do in fact potently protect the neurons that normally are destroyed by these diseases. Their studies also showed that protection of the neurons correlates with improvement of some disease symptoms, including maintaining normal movement in PD worms, and coordination and strength in ALS mice.

Of mice and worms

Excerpt from:
Potential new class of drugs blocks nerve cell death

Related Posts

Comments are closed.