This article was originally published atThe Conversation.The publication contributed the article to Space.com'sExpert Voices: Op-Ed & Insights.
Christopher Palma, Associate Dean for Undergraduate Students and Teaching Professor of Astronomy & Astrophysics, Pennsylvania State University
As an astronomer, the question I hear the most is why isn't Pluto a planet anymore? More than 10 years ago, astronomers famously voted to change Pluto's classification. But the question still comes up.
When I am asked directly if I think Pluto is a planet, I tell everyone my answer is no. It all goes back to the origin of the word "planet." It comes from the Greek phrase for "wandering stars." Back in ancient times before the telescope was invented, the mathematician and astronomer Claudius Ptolemy called stars "fixed stars" to distinguish them from the seven wanderers that move across the sky in a very specific way. These seven objects are the Sun, the Moon, Mercury, Venus, Mars, Jupiter and Saturn.
When people started using the word "planet," they were referring to those seven objects. Even Earth was not originally called a planet but the Sun and Moon were.
Since people use the word "planet" today to refer to many objects beyond the original seven, it's no surprise we argue about some of them.
Although I am trained as an astronomer and I studied more distant objects like stars and galaxies, I have an interest in the objects in our Solar System because I teach several classes on planetary science.
The word "planet" is used to describe Uranus and Neptune, which were discovered in 1781 and 1846 respectively, because they move in the same way that the other "wandering stars" move. Like Saturn and Jupiter, if you look at them through a telescope, they appear bigger than stars, so they were recognized to be more like planets than stars.
Not long after the discovery of Uranus, astronomers discovered additional wandering objects these were named Ceres, Pallas, Juno and Vesta. At the time they were considered planets, too. Through a telescope they look like pinpoints of light and not disks. With a small telescope, even distant Neptune appears fuzzier than a star. Even though these other, new objects were called planets at first, astronomers thought they needed a different name since they appear more star-like than planet-like.
William Herschel (who discovered Uranus) is often said to have named them "asteroids" which means "star-like," but recently, Clifford Cunningham claimed that the person who coined that name was Charles Burney Jr., a preeminent Greek scholar.
Today, just like the word "planet," we use the word "asteroid" differently. Now it refers to objects that are rocky in composition, mostly found between Mars and Jupiter, mostly irregularly shaped, smaller than planets, but bigger than meteoroids. Most people assume there is a strict definition for what makes an object an asteroid. But there isn't, just like there never was for the word "planet."
In the 1800s the large asteroids were called planets. Students at the time likely learned that the planets were Mercury, Venus, Earth, Mars, Ceres, Vesta, Pallas, Juno, Jupiter, Saturn, Uranus and, eventually, Neptune. Most books today write that asteroids are different than planets, but there is a debate among astronomers about whether the term "asteroid" was originally used to mean a small type of planet, rather than a different type of object altogether.
These days, scientists consider properties of these celestial objects to figure out whether an object is a planet or not. For example, you might say that shape is important; planets should be mostly spherical, while asteroids can be lumpy. As astronomers try to fix these definitions to make them more precise, we then create new problems. If we use roundness as an important distinction for objects, what should we call moons? Should moons be considered planets if they are round and asteroids if they are not round? Or are they somehow different from planets and asteroids altogether?
I would argue we should again look to how the word "moon" came to refer to objects that orbit planets.
When astronomers talk about the Moon of Earth, we capitalize the word "Moon" to indicate that it's a proper name. That is, the Earth's moon has the name, Moon. For much of human history, it was the only Moon known, so there was no need to have a word that referred to one celestial body orbiting another. This changed when Galileo discovered four large objects orbiting Jupiter. These are now called Io, Europa, Ganymede and Callisto, the moons of Jupiter.
This makes people think the technical definition of moon is a satellite of another object, and so we call lots of objects that orbit Mars, Jupiter, Saturn, Uranus, Neptune, Pluto, Eris, Makemake, Ida and a large number of other asteroids moons. When you start to look at the variety of moons, some, like Ganymede and Titan, are larger than Mercury. Some are similar in size to the object they orbit. Some are small and irregularly shaped, and some have odd orbits.
So they are not all just like Earth's Moon. If we try to fix the definition for what is a moon and how that differs from a planet and asteroid, we are likely going to have to reconsider the classification of some of these objects, too. You can argue that Titan has more properties in common with the planets than Pluto does, for example. You can also argue that every single particle in Saturn's rings is an individual moon, which would mean that Saturn has billions upon billions of moons.
The most recent naming challenge astronomers face arose when they discovering planets far from our Solar System orbiting around distant stars. These objects have been called extrasolar planets, exosolar planets or exoplanets.
Astronomers are currently searching for exomoons orbiting exoplanets. Exoplanets are being discovered that have properties unlike the planets in our Solar System, so astronomers have started putting them in categories like "hot Jupiter," "warm Jupiter," "super-Earth" and "mini-Neptune."
Ideas for how planets form also suggest that there are planetary objects that have been flung out of orbit from their parent star. This means there are free-floating planets not orbiting any star. Should planetary objects that are flung out of a solar system also get ejected from the elite club of planets?
When I teach, I end this discussion with a recommendation. Rather than arguing over planet, moon, asteroid and exoplanet, I think we need to do what Herschel and Burney did and coin a new word. For now, I use "world" in my class, but I do not offer a rigorous definition of what makes something a world and what does not. Instead, I tell my students that all of these objects are of interest to study.
A lot of people seem to feel that scientists wronged Pluto by changing its classification. I look at it that Pluto was only originally called a planet because of an accident; scientists were looking for planets beyond Neptune, and when they found Pluto they called it a planet, even though its observable properties should have led them to call it an asteroid.
As our understanding of this object has grown, I feel like the evidence now leads me to call Pluto something besides planet. There are other scientists who disagree, feeling Pluto still should be classified as a planet.
But remember: The Greeks started out calling the Sun a planet given how it moved on the sky. We now know that the properties of the Sun show it to belong in a very different category from the planets; it's a star, not a planet. If we can stop calling the Sun a planet, why can't we do the same to Pluto?
This article is republished fromThe Conversationunder a Creative Commons license. Read theoriginal article.
Follow all of the Expert Voices issues and debates and become part of the discussion on Facebook and Twitter. The views expressed are those of the author and do not necessarily reflect the views of the publisher.
View post:
Planetary Confusion Why Astronomers Keep Changing What It Means to Be A Planet - Space.com
- Rotational spectra of isotopic species of methyl cyanide, CH_3CN, in their ground vibrational states up to terahertz frequencies [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Cosmological parameter extraction and biases from type Ia supernova magnitude evolution [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Continuous monitoring of pulse period variations in Hercules X-1 using Swift/BAT [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Constraining the ortho-to-para ratio of H{_2} with anomalous H{_2}CO absorption [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- A photometric and spectroscopic study of the new dwarf spheroidal galaxy in Hercules - Metallicity, velocities, and a clean list of RGB members [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Luminosities and mass-loss rates of SMC and LMC AGB stars and red supergiants [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Electron beam – plasma system with the return current and directivity of its X-ray emission [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The propagation of the shock wave from a strong explosion in a plane-parallel stratified medium: the Kompaneets approximation [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Analysis of hydrogen-rich magnetic white dwarfs detected in the Sloan Digital Sky Survey [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Letter: Centaurus A as TeV \gamma-ray and possible UHE cosmic-ray source [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Young pre-low-mass X-ray binaries in the propeller phase - Nature of the 6.7-h periodic X-ray source 1E 161348-5055 in RCW 103 [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Radiative rates and electron impact excitation rates for transitions in Cr VIII [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Solar granulation from photosphere to low chromosphere observed in Ba II 4554 Å line [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Does the HD 209458 planetary system pose a challenge to the stellar atmosphere models? [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Effect of asymmetry of the radio source distribution on the apparent proper motion kinematic analysis [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Destriping CMB temperature and polarization maps [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Search for cold debris disks around M-dwarfs. II [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Precise data on Leonid fireballs from all-sky photographic records [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- An X-ray view of 82 LINERs with Chandra and XMM-Newton data [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Radio observations of ZwCl 2341.1+0000: a double radio relic cluster [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Candidate free-floating super-Jupiters in the young \sigma Orionis open cluster [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The metallicity gradient as a tracer of history and structure: the Magellanic Clouds and M33 galaxies [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- XMMSL1 J060636.2-694933: an XMM-Newton slew discovery and Swift/Magellan follow up of a new classical nova in the LMC [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The inner rim structures of protoplanetary discs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The solar Ba{\sf II} 4554 Å line as a Doppler diagnostic: NLTE analysis in 3D hydrodynamical model [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Magnetic evolution of superactive regions - Complexity and potentially unstable magnetic discontinuities [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Low-mass protostars and dense cores in different evolutionary stages in IRAS 00213+6530 [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- PMAS optical integral field spectroscopy of luminous infrared galaxies - I. The atlas [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- First AGILE catalog of high-confidence gamma-ray sources [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Radiative hydrodynamics simulations of red supergiant stars - I. interpretation of interferometric observations [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Extrasolar planets and brown dwarfs around A–F type stars - VII. \theta Cygni radial velocity variations: planets or stellar phenomenon? [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253 - II. The magnetic field structure [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Physical structure and water line spectrum predictions of the intermediate mass protostar OMC2-FIR4 [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The bright galaxy population of five medium redshift clusters - II. Quantitative galaxy morphology [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Dust in brown dwarfs and extra-solar planets - II. Cloud formation for cosmologically evolving abundances [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The quiet Sun magnetic field observed with ZIMPOL on THEMIS - I. The probability density function [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Complexity in the sunspot cycle [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Properties and nature of Be stars - 26. Long-term and orbital changes of \zeta Tauri [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The massive Wolf-Rayet binary LSS 1964 (=WR 29) - II. The V light curve [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Supernova progenitor stars in the initial range of 23 to 33 solar masses and their relation with the SNR Cassiopeia A [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Hertzsprung-Russell Diagram of Star Clusters [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Table of the 10 Brightest stars within 10 Parsecs of the Sun [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Hertzsprung-Russell Diagram of the Nearest Stars [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Magnitude and Color in Astronomy [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Stellar Types [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Brown Dwarfs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Spotting the Minimum [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Structure and Evolution of Brown Dwarfs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- No Bang from the Big Bang Machine [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Sizes of the Stars and the Planets [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- An Implausible Light Thrust [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- the Masses of Degenerate Objects [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Degeneracy Pressure [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Introduction to Degenerate Objects [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Radii of Degenerate Objects [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Inevitability of Black Holes [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Scientific Pig-Out [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Neutrino Cooling of Degenerate Dwarfs [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- The Neutrino Cooling of Neutron Stars [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Overview of Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Energetics of Thermonuclear Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Thermonuclear Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Nuclear Reactions in Thermonuclear Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Core-Collapse Supernovae [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Neutrinos and SN 1987A [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Revealing the sub-AU asymmetries of the inner dust rim in the disk around the Herbig Ae star R Coronae Austrinae [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Probing the dust properties of galaxies up to submillimetre wavelengths - I. The spectral energy distribution of dwarf galaxies using LABOCA [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- On the physical origin of the second solar spectrum of the Sc II line at 4247 Å [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- On detecting the large separation in the autocorrelation of stellar oscillation times series [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Imaging the spotty surface of Betelgeuse in the H band [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Chandra observation of Cepheus A: the diffuse emission of HH 168 resolved [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- A planetary eclipse map of CoRoT-2a - Comprehensive lightcurve modeling combining rotational-modulation and transits [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- The chemical composition of carbon stars. The R-type stars [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Flow instabilities of magnetic flux tubes - IV. Flux storage in the solar overshoot region [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Fragmentation of a dynamically condensing radiative layer [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Temporal variations of the CaXIX spectra in solar flares [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Deuterium chemistry in the Orion Bar PDR - “Warm” chemistry starring CH_{2}D^+ [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Metal abundances in the cool cores of galaxy clusters [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- The nature of the X-ray binary IGR J19294+1816 from INTEGRAL, RXTE, and Swift observations [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Relating basic properties of bright early-type dwarf galaxies to their location in Abell 901/902 [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]