Functionalized nanochannels can detect single-mismatched DNA sequence

A Single Nucleotide Polymorphism (SNP) is a single nucleotide replacement in a DNA sequence - occurring when a single nucleotide (A, T, C, or G) in the genome differs - which can result in different reaction by people to pathogens and medicines. Detection of these SNPs is becoming increasingly important with the move towards more personalized healthcare. Researchers are therefore working hard in developing biomedical lab-on-chip sensors that allow the fast detection of SNPs in DNA using only very small samples of a patient's blood. Already, nanoscale detection techniques such as synthetic nanochannels are being used for DNA detection by specific DNA hybridization with molecular probes immobilized on the nanochannel walls. However, the preparation of these sensors is not easy and specific functionalization at the wall surface remains a critical issues. Researchers have now introduced a new concept of DNA-based molecular recognition agents which allows detecting SNPs with very high precision and efficiency.

Related Posts

Comments are closed.