Re-engineering life: New Phytologist Workshop on Synthetic Biology

Public release date: 6-Jun-2012 [ | E-mail | Share ]

Contact: Helen Pinfield-Wells h.pinfield-wells@lancaster.ac.uk Wiley-Blackwell

Scientists from across the world will meet at the University of Bristol on 6 June 2012 for a New Phytologist Workshop on Synthetic Biology (http://www.newphytologist.org/synthetic). There, they will discuss recent advances in this rapidly evolving and controversial new field.

Synthetic biology made headlines in 2010 when researchers at the J Craig Venter Institute announced they had created the first 'synthetic cell'. Created by transferring an artificially constructed DNA sequence into an existing cell which had been stripped of its native DNA, the cell behaved like a member of the species dictated by the synthetic DNA. Since then, the ambition and scale of synthetic biology enterprises have increased even further.

One key principle in the field is the standardisation of 'biological parts' in order to construct synthetic genes, systems or even entire species from new. This is a concept more familiar to engineers than biologists and indeed, attendees at the meeting will have a range of backgrounds from engineering and medicine to plant biologists and industrial scientists.

The idea of breaking down genes, complex biological systems, into simplified building blocks which can be shared and altered freely before being applied to a vast range of tasks is an appealing one to both researchers and industrialists.

With a quickly expanding toolkit and unconstrained by the limits of traditional genetic modification techniques (where genes must already exist in nature to be utilised), synthetic biology offers the opportunity to synthesise completely 'custom' genomes for specific applications. Anne Osbourn, Associate Research Director at the prestigious John Innes Centre, Editor of the New Phytologist journal and an organiser of the workshop suggests that the range of applications of synthetic biology is huge.

'As just one example, synthetic biology has the potential to enable us to make fuels, pharmaceuticals, chemicals and novel biomaterials faster, better and cheaper,' Anne explains. 'It could provide new ways of improving life in developing countries, for example through the generation of biosensors that monitor water quality or allow early detection of disease outbreaks.'

Synthetic biology also offers huge potential benefits when applied in plants and scientists at the workshop will detail research topics ranging from ensuring food security through crop improvement to re-engineering plants for other uses such as producing superior polymers for industry or vaccines for medicine. One presentation at the workshop will focus on technology developed at the John Innes Centre that has already been used to produce a vaccine for the H5N1 avian flu virus.

However, as with genetic modification in the past there are groups with growing concerns about the use of synthetic biology. Drawing parallels with recent events at GM crop trials conducted at Rothamsted Research and attempts by scientists to engage with protestors there, speakers on the final day of the workshop will outline the need for scientists to take the opportunity to 'frame' the debate around synthetic biology at an early stage as was arguably failed to achieve by scientists working on GM in earlier decades.

Read more:
Re-engineering life: New Phytologist Workshop on Synthetic Biology

Related Posts

Comments are closed.