Turning DNA into a hard drive

Silicon-based computers are fine for typing term papers and surfing the Web, but scientists want to make devices that can work on a far smaller scale, recording data within individual cells. One way to do that is to create a microscopic hard drive out of DNA, the molecule that already stores the genetic blueprints of all living things.

Stanford University bioengineer Drew Endy is a pioneer in the field of synthetic biology, which aims to turn the basic building blocks of nature into tools for designing living machines. This week, members of his lab reported in Proceedings of the National Academies of Sciences that they had figured out a way to turn DNA into a rewriteable data storage device that can operate within a cell. He spoke with The Times about the research.

What is synthetic biology?

Synthetic biology is basically a celebration of an engineer's inclination to want to make things using biology. Humans often learn by taking things apart. But an equally powerful way to learn is putting things back together. In synthetic biology, we can begin to put natural biological systems back together at the molecular level to test the understanding of genetics and biology we've accrued over the last 70 years.

So you want to build things using biology including, in this case, a way to use DNA to store data?

Yes. We wanted to scope out an area where there are grand challenges in bioengineering, and genetically encoded data storage meaning storing information inside living organisms fit the bill.

Why would this be useful?

Say I wanted to put a genetically encoded counter to record cell divisions within every cell of my liver. A USB memory stick simply isn't going to fit in there. And even if I could miniaturize such a device with a future silicon-based manufacturing platform, it would be incredibly difficult to connect up to the biochemistry I'm going to want to record information about.

How does your data storage system work?

We engineered a little sequence of DNA and inserted it onto a chromosome in anE. colibacterium. Then we targeted this DNA with enzymes. Under one set of conditions, one of the enzymes cuts the DNA out from the genome, turns it and reinserts it back into the DNA. It would be as if you took a word in a sentence of text, flipped it upside down and backwards, and pasted it back into the sentence. It would look kind of funny.

Excerpt from:
Turning DNA into a hard drive

Related Posts

Comments are closed.