Roses are red, violets are bluewhat gives flowers those eye-catching hues? – Phys.Org

February 13, 2017 by Cheryl Dybas Knock-your-eyes-out red: A flowering plant native to Mexico called early jessamine or red cestrum. Credit: Stacey Smith

To solve the mystery of why roses are red and violets are blue, scientists are peering into the genes of plant petals.

"When you ask anyone how one flower is different from another, for most of us, color is the feature that first comes to mind," says evolutionary biologist Stacey Smith of the University of Colorado Boulder.

Most people don't think about why a flower is a particular color, but it's an important question for biologists, says Prosanta Chakrabarty, a program director in the National Science Foundation's (NSF) Division of Environmental Biology, which funds Smith's research.

Smith and her team are "looking at the genetics of flower colors, and at changes in those colors over time," Chakrabarty says.

It all comes down to biochemistry

In nature, flowers come in hues that span the rainbow.

"On a microscopic level, the colors come from the biochemical composition of petal cells," Smith says.

Pigments are the main chemicals responsible. Plants contain thousands of pigment compounds, all of which belong to three major groups: flavonoids, carotenoids and betalains. Most flower colors come from flavonoids and carotenoids.

"In addition to giving flowers their colors, carotenoids and anthocyaninswhich are flavonoidshave antioxidant and other medicinal properties, including anti-cancer, antibacterial, antifungal and anti-inflammatory activity," says Simon Malcomber, a program director in NSF's Division of Environmental Biology.

Malcomber says the research could show how plants evolved to synthesize the carotenoids and anthocyanins that produce red flowers. "The results could be used in future drug discovery research," he says.

Much of Smith's work is focused on understanding how changes in flavonoid and carotenoid biochemistry relate to differences in flower colors. She and colleagues conduct research on the tomato family, a group of about 2,800 species that includes tomatoes, eggplants, chili peppers, tobacco and potatoes.

"These domesticated species don't have a terribly wide range of flower colors and patterns, but their wild relatives often do," Smith says. "So we study wild, or undomesticated, species, which are most diverse in South America."

Hot pursuit of red-hot color

Smith has had her share of adventures in the fieldlike the time she tried to find a plant with red flowers that lives at the base of a volcanic crater in Ecuador.

"It was my very first field trip, and I wasn't super-savvy," Smith says. "I took a bus to the outside of the crater, dragged my suitcase up to the rim then down into the crater, assuming there would be a village and a way to get out. There was neither. Thankfully, there was a park station nearby where I was able to stay overnight. I found the species in full flower in the forest the next day."

Smith is currently in hot pursuit of an answer to the question: When did red flowers first appear in the tomato family? "We thought that red flowers might have evolved many times independently of each other because red-flowered species are scattered among many branches of this family tree," she says.

Just 34 species in the entire tomato family, however, have red flowers.

"With such a small number, we can take samples of every one of these species to find out whether it represents an independent origin, and to determine the biochemistry of how it makes red flowers," Smith says.

She and other biologists traveled from Brazil to Colombia to Mexico to track down red flowers and measure their pigments. "We found surprising patterns," Smith says, "including that nearly every red-flowered species represents a new origin of the color, so red flowers have evolved at least 30 different times."

While the researchers expected that flowers would be red due to the presence of red pigments, they found that plants often combine yellow-orange carotenoids with purple anthocyanins to produce red flowers.

"Our studies are now aimed at tracing the entire genetic pathway by which plants make flower colors and identifying genetic changes to see if there are common mechanisms," Smith says.

The scientists want to know, for example, what changes have taken place since flowers first became red.

Answers in a petunia

"We're focusing on a single branch of the tomato family [petunias], creating an evolutionary history and conducting measurements of gene expression, pigment production and flower color," says Smith.

Petunias and their colorful relatives are good choices for this research, according to Smith.

"Most of us have seen the tremendous variation in petunia colors at our local nurseries, and indeed, petunias have served as models for studying flower color and biochemistry for decades."

Few people, though, are aware of the variation in petunias' wild relatives, most of which are found in Argentina and Brazil. "We're harnessing this natural diversity, as well as genetic information already available from ornamental petunias, to reconstruct the evolutionary history of flower colors," says Smith.

"If earlier studies taught us anything," she adds, "we shouldn't expect flowers to play by the rules."

Will roses always be red, and violets blue?

Explore further: Turning pretty penstemon flowers from blue to red

While roses are red, and violets are blue, how exactly do flower colors change?

Flower colors that contrast with their background are more important to foraging bees than patterns of colored veins on pale flowers according to new research, by Heather Whitney from the University of Cambridge in the UK, ...

(Phys.org) -- A team of researchers in Australia has shown that the evolution of flowers in that country was driven by the preferences of bees, rather than the other way around. In their paper published in the Proceedings ...

Researchers have uncovered the secret recipe to making some petunias such a rare shade of blue. The findings may help to explain and manipulate the color of other ornamental flowers, not to mention the taste of fruits and ...

Male hummingbirds drive female birds away from their preferred yellow-flowered plant, which may have implications for flower diversification, according a study published Jan. 27, 2016 in the open-access journal PLOS ONE by ...

Roses are red, violets are blue. Everybody knows that, but what makes them so? Although plant breeders were aware of some of the genes involved, there was as yet no quantitative study of how pigment turns a flower red, blue ...

Biological invasions pose major threats to biodiversity, but little is known about how evolution might alter their impacts over time.

From eyes the size of basketballs to appendages that blink and glow, deep-sea dwellers have developed some strange features to help them survive their cold, dark habitat.

Growing up in tough conditions can make wild animals live longer, new research suggests.

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send "repair-proteins" to the damaged parts within the DNA. To do this, an elaborate ...

Previous studies of flocks, swarms, and schools suggest that animal societies may verge on a "critical" pointin other words, they are extremely sensitive and can be easily tipped into a new social regime. But exactly how ...

A team at the Wellcome Trust Sanger Institute has discovered how a promising malarial vaccine target - the protein RH5 - helps parasites to invade human red blood cells. Published today in Nature Communications, the study ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

See the original post:
Roses are red, violets are bluewhat gives flowers those eye-catching hues? - Phys.Org

Related Posts

Comments are closed.