This article originally ran on Ensia.
Which is more disruptive to a plant: genetic engineering or conventional breeding?
It often surprises people to learn that GE commonly causes less disruption to plants than conventional techniques of breeding. But equally profound is the realization that the latest GE techniques, coupled with a rapidly expanding ability to analyze massive amounts of genetic material, allow us to make super-modest changes in crop plant genes that will enable farmers to produce more food with fewer adverse environmental impacts. Such super-modest changes are possible with CRISPR-based genome editing, a powerful set of new genetic tools that is leading a revolution in biology.
My interest in GE crops stems from my desire to provide more effective and sustainable plant disease control for farmers worldwide. Diseases often destroy 10 to 15 percent of potential crop production, resulting in global losses of billions of dollars annually. The risk of disease-related losses provides an incentive to farmers to use disease-control products such as pesticides.
One of my strongest areas of expertise is in the use of pesticides for disease control. Pesticides certainly can be useful in farming systems worldwide, but they have significant downsides from a sustainability perspective. Used improperly, they can contaminate foods. They can pose a risk to farm workers. And they must be manufactured, shipped and applied all processes with a measurable environmental footprint. Therefore, I am always seeking to reduce pesticide use by offering farmers more sustainable approaches to disease management.
It often surprises people to learn that GE commonly causes less disruption to plants than conventional techniques of breeding.
What follows are examples of how minimal GE changes can be applied to make farming more environmentally friendly by protecting crops from disease. They represent just a small sampling of the broad landscape of opportunities for enhancing food security and agricultural sustainability that innovations in molecular biology offer today.
Genetically altering crops the way these examples demonstrate creates no cause for concern for plants or people. Mutations occur naturally every time a plant makes a seed; in fact, they are the very foundation of evolution. All of the food we eat has all kinds of mutations, and eating plants with mutations does not cause mutations in us.
A striking example of how a tiny genetic change can make a big difference to plant health is the strategy of "knocking out" a plant gene that microorganisms can benefit from. Invading microorganisms sometimes hijack certain plant molecules to help themselves infect the plant. A gene that produces such a plant molecule is known as a susceptibility gene.
We can use CRISPR-based genome editing to create a "targeted mutation" in a susceptibility gene. A change of as little as a single nucleotide in the plants genetic material the smallest genetic change possible can confer disease resistance in a way that is absolutely indistinguishable from natural mutations that can happen spontaneously. Yet if the target gene and mutation site are carefully selected, a one-nucleotide mutation may be enough to achieve an important outcome.
A substantial body of research shows proof-of-concept that a knockout of a susceptibility gene can increase resistance in plants to a wide variety of disease-causing microorganisms. An example that caught my attention pertained to powdery mildew of wheat, because fungicides (pesticides that control fungi) are commonly used against this disease. While this particular genetic knockout is not yet commercialized, I personally would rather eat wheat products from varieties that control disease through genetics than from crops treated with fungicides.
Plant viruses are often difficult to control in susceptible crop varieties. Conventional breeding can help make plants resistant to viruses, but sometimes it is not successful.
Early approaches to engineering virus resistance in plants involved inserting a gene from the virus into the plants genetic material. For example, plant-infecting viruses are surrounded by a protective layer of protein, called the "coat protein." The gene for the coat protein of a virus called papaya ring spot virus was inserted into papaya. Through a process called RNAi, this empowers the plant to inactivate the virus when it invades. GE papaya has been a spectacular success, in large part saving the Hawaiian papaya industry.
Mutations occur naturally every time a plant makes a seed; in fact, they are the very foundation of evolution.
Through time, researchers discovered that even just a very small fragment from one viral gene can stimulate RNAi-based resistance if precisely placed within a specific location in the plants DNA. Even better, they found we can "stack" resistance genes engineered with extremely modest changes in order to create a plant highly resistant to multiple viruses. This is important because, in the field, crops are often exposed to infection by several viruses.
Does eating this tiny bit of a viral gene sequence concern me? Absolutely not, for many reasons, including:
Microorganisms often can overcome plants biochemical defenses by producing molecules called effectors that interfere with those defenses. Plants respond by evolving proteins to recognize and disable these effector molecules. These recognition proteins are called "R" proteins ("R" standing for "resistance"). Their job is to recognize the invading effector molecule and trigger additional defenses. A third interesting approach, then, to help plants resist an invading microorganism is to engineer an R protein so that it recognizes effector molecules other than the one it evolved to detect. We can then use CRISPR to supply a plant with the very small amount of DNA needed to empower it to make this protein.
This approach, like susceptibility knockouts, is quite feasible, based on published research. Commercial implementation will require some willing private- or public-sector entity to do the development work and to face the very substantial and costly challenges of the regulatory process.
The three examples here show that extremely modest engineered changes in plant genetics can result in very important benefits. All three examples involve engineered changes that trigger the natural defenses of the plant. No novel defense mechanisms were introduced in these research projects, a fact that may appeal to some consumers. The wise use of the advanced GE methods illustrated here, as well as others described elsewhere, has the potential to increase the sustainability of our food production systems, particularly given the well-established safety of GE crops and their products for consumption.
View post:
When genetic engineering is the environmentally friendly choice - GreenBiz
- Who are We? [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Vilsack targeted for his Pro-GMOs stand [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Call for technology to produce cellulosic ethanol [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Kenyan scientists weigh on GMOs [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Indian researcher makes a case for biotechnology [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Michigan smoothens the way for alternative energy investors [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Link of ethanol use to high food prices questioned [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- EU challenges France on GM Maize [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- POET rolls out cellulosic ethanol plant [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- There’s a bright future for cellulosic ethanol investment [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Cellulosic ethanol can considerably reduce gasoline use by 2030 [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Human Genetic Engineering - Background [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Human Genetic Engineering - History [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Human Genetic Engineering - Methods [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Human Genetic Engineering - Uses [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Human Genetic Engineering - Controversy [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Human Genetic Engineering - In popular culture [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Human genetic engineering - An Introduction [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Human Genetic Engineering - A Very Hot Issue! [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- What are the risks of genetic engineering in humans? (human genetic engineering) [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- What are the benefits of human genetic engineering? (human genetic engineering) [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Genetic Engineering - Ethics and Controversy [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Genetic Engineering Ethics In Science Fiction [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Genetic Engineering Ethics [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Welcome to Pest Control Exterminator Network [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- OMD - Genetic Engineering [Last Updated On: August 27th, 2011] [Originally Added On: August 27th, 2011]
- X-Ray Spex - Genetic Engineering [Last Updated On: August 27th, 2011] [Originally Added On: August 27th, 2011]
- Ancient Alien Nephilim, Giants, Mutants, Genetic Engineering, and Hybrids (2-6) [Last Updated On: August 28th, 2011] [Originally Added On: August 28th, 2011]
- Human-Plant Hybrid (Genetic Engineering at Home) [Last Updated On: August 28th, 2011] [Originally Added On: August 28th, 2011]
- Ancient Alien Nephilim, Giants, Mutants, Genetic Engineering, and Hybrids (1-6) [Last Updated On: August 29th, 2011] [Originally Added On: August 29th, 2011]
- 3. Genetic Engineering [Last Updated On: August 29th, 2011] [Originally Added On: August 29th, 2011]
- Genetic engineering nightmare [Last Updated On: August 31st, 2011] [Originally Added On: August 31st, 2011]
- Ancient Alien Nephilim, Giants, Mutants, Genetic Engineering, and Hybrids (3-6) [Last Updated On: August 31st, 2011] [Originally Added On: August 31st, 2011]
- Future of genetic engineering - by Futurist Dr Patrick Dixon. Genetic mutations and genetic disorders. Gene science by conference keynote speaker [Last Updated On: September 2nd, 2011] [Originally Added On: September 2nd, 2011]
- Genetic engineering: The world's greatest scam? [Last Updated On: September 3rd, 2011] [Originally Added On: September 3rd, 2011]
- Watch Fed Up! Genetic Engineering, Industrial Agriculture and Sustainable Alternatives Full Movie Online Part 1/15 [Last Updated On: September 3rd, 2011] [Originally Added On: September 3rd, 2011]
- Ancient Alien Nephilim, Giants, Mutants, Genetic Engineering, and Hybrids (5-6) [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Genetic Engineering, Humans with Animals. [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- Is Genetic Engineering Good for the Environment? [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- Open Source Food and Genetic Engineering - Michael Pollan [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Ancient Alien ( demons ) Nephilim Giants, Mutants Genetic Engineering and Hybrids.avi [Last Updated On: September 11th, 2011] [Originally Added On: September 11th, 2011]
- MUST SEE : Genetic Engineering Corn Grows in Sand ! For Those That Appreciate Nature ! [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Designing Humanity - Genetic Engineering [Last Updated On: September 14th, 2011] [Originally Added On: September 14th, 2011]
- Genetic Modification | QUEEN ANNE SCIENCE CAFE [Last Updated On: September 14th, 2011] [Originally Added On: September 14th, 2011]
- Genetic Engineering in California Agriculture [Last Updated On: September 15th, 2011] [Originally Added On: September 15th, 2011]
- Genetic Engineering Animation [Last Updated On: September 15th, 2011] [Originally Added On: September 15th, 2011]
- Proof Of Ancient Genetic Engineering [Last Updated On: September 15th, 2011] [Originally Added On: September 15th, 2011]
- Joad Cressbeckler Fears Genetic Modification Causes 'Wrath-Minded Taters' [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- Ethical Concerns With Genetic Engineering [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- Scientists under Attack - Genetic Engineering in the magnetic Field of Money TRAILER [Last Updated On: September 17th, 2011] [Originally Added On: September 17th, 2011]
- Genetic Modification [Last Updated On: September 18th, 2011] [Originally Added On: September 18th, 2011]
- Genetic Engineering Not a New Science - Pamela Ronald [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- The Island of Dr. Moreau prt. IV [Last Updated On: September 28th, 2011] [Originally Added On: September 28th, 2011]
- Ancient Alien Nephilim, Giants, Mutants, Genetic Engineering, and Hybrids (4-6) [Last Updated On: September 30th, 2011] [Originally Added On: September 30th, 2011]
- 4. Genetic Engineering (cont.) [Last Updated On: October 2nd, 2011] [Originally Added On: October 2nd, 2011]
- Ancient Alien Nephilim, Giants, Mutants, Genetic Engineering, and Hybrids (6-6) [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- Islands at Risk (Part 3) - Genetic Engineering in Hawai'i [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- Morgellons Is Genetic Engineering , A Silent Superbug [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- Islands at Risk (Part 2) - Genetic Engineering in Hawai'i [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- The Ethics of Genetically Engineering Children - Arthur Caplan [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- Disney Geneticists Debut New Child Stars [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- Genetic Engineering and Society, Lecture 1a, Honors Collegium 70A, UCLA [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- OMD - Genetic Engineering (312mm Version) (Audio Only) [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- The difference between normal and genetically modified food [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- Bioethics Of Human Genetic Engineering - Documentary Video [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- Islands at Risk (Part 1) - Genetic Engineering in Hawai'i [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- Coast To Coast AM: Genetic Engineering 3-24-2011 Download Link [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- Lloyd Pye - Ancient Genetic Engineering [Last Updated On: October 13th, 2011] [Originally Added On: October 13th, 2011]
- X RAY SPEX - ROUNDHOUSE LONDON GENETIC ENGINEERING - Video [Last Updated On: October 13th, 2011] [Originally Added On: October 13th, 2011]
- OMD - Genetic Engineering 1983 - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- OMD - GENETIC ENGINEERING - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- Mechanism of Recombination - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- Harvard Prof. Michael Sandel on Human Genetic Modification, Berkeley, CA, 7 May 2007 - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- Genetic Engineering [Medical Ethics Series] - (excerpt) - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- Genetic Engineering and Society, Lecture 1b, Honors Collegium 70A, UCLA - Video [Last Updated On: October 24th, 2011] [Originally Added On: October 24th, 2011]
- Genomics: genetic modification (genetic engineering) and the human gene project - Video [Last Updated On: October 26th, 2011] [Originally Added On: October 26th, 2011]
- Genetically Engineering Intelligent Babies - Horizon: Are We Still Evolving? Preview - BBC Two - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- "GENETIC ENGINEERING" GERMAN REGIME feat THIRSTIN HOWL THE3RD - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- Science 360: Genetic Engineering - Video [Last Updated On: October 31st, 2011] [Originally Added On: October 31st, 2011]
- UFOTV Presents... - Bad Seed: Danger of Genetically Modified Food - Video [Last Updated On: November 8th, 2011] [Originally Added On: November 8th, 2011]