The impact of nanotechnology extends from its medical, ethical, mental, legal and environmental applications, to fields such as engineering, biology, chemistry, computing, materials science, and communications.
Major benefits of nanotechnology include improved manufacturing methods, water purification systems, energy systems, physical enhancement, nanomedicine, better food production methods, nutrition and large-scale infrastructure auto-fabrication.[1] Nanotechnology's reduced size may allow for automation of tasks which were previously inaccessible due to physical restrictions, which in turn may reduce labor, land, or maintenance requirements placed on humans.
Potential risks include environmental, health, and safety issues; transitional effects such as displacement of traditional industries as the products of nanotechnology become dominant, which are of concern to privacy rights advocates. These may be particularly important if potential negative effects of nanoparticles are overlooked.
Whether nanotechnology merits special government regulation is a controversial issue. Regulatory bodies such as the United States Environmental Protection Agency and the Health and Consumer Protection Directorate of the European Commission have started dealing with the potential risks of nanoparticles. The organic food sector has been the first to act with the regulated exclusion of engineered nanoparticles from certified organic produce, firstly in Australia and the UK,[2] and more recently in Canada, as well as for all food certified to Demeter International standards[3]
The presence of nanomaterials (materials that contain nanoparticles) is not in itself a threat. It is only certain aspects that can make them risky, in particular their mobility and their increased reactivity. Only if certain properties of certain nanoparticles were harmful to living beings or the environment would we be faced with a genuine hazard. In this case it can be called nanopollution.
In addressing the health and environmental impact of nanomaterials we need to differentiate between two types of nanostructures: (1) Nanocomposites, nanostructured surfaces and nanocomponents (electronic, optical, sensors etc.), where nanoscale particles are incorporated into a substance, material or device (fixed nano-particles); and (2) free nanoparticles, where at some stage in production or use individual nanoparticles of a substance are present. These free nanoparticles could be nanoscale species of elements, or simple compounds, but also complex compounds where for instance a nanoparticle of a particular element is coated with another substance (coated nanoparticle or core-shell nanoparticle).
There seems to be consensus that, although one should be aware of materials containing fixed nanoparticles, the immediate concern is with free nanoparticles.
Nanoparticles are very different from their everyday counterparts, so their adverse effects cannot be derived from the known toxicity of the macro-sized material. This poses significant issues for addressing the health and environmental impact of free nanoparticles.
To complicate things further, in talking about nanoparticles it is important that a powder or liquid containing nanoparticles almost never be monodisperse, but contain instead a range of particle sizes. This complicates the experimental analysis as larger nanoparticles might have different properties from smaller ones. Also, nanoparticles show a tendency to aggregate, and such aggregates often behave differently from individual nanoparticles.
The health impacts of nanotechnology are the possible effects that the use of nanotechnological materials and devices will have on human health. As nanotechnology is an emerging field, there is great debate regarding to what extent nanotechnology will benefit or pose risks for human health. Nanotechnology's health impacts can be split into two aspects: the potential for nanotechnological innovations to have medical applications to cure disease, and the potential health hazards posed by exposure to nanomaterials.
Nanomedicine is the medical application of nanotechnology.[4] The approaches to nanomedicine range from the medical use of nanomaterials, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology. Nanomedicine seeks to deliver a valuable set of research tools and clinically helpful devices in the near future.[5][6] The National Nanotechnology Initiative expects new commercial applications in the pharmaceutical industry that may include advanced drug delivery systems, new therapies, and in vivo imaging.[7] Neuro-electronic interfaces and other nanoelectronics-based sensors are another active goal of research. Further down the line, the speculative field of molecular nanotechnology believes that cell repair machines could revolutionize medicine and the medical field.
Nanomedicine research is directly funded, with the US National Institutes of Health in 2005 funding a five-year plan to set up four nanomedicine centers. In April 2006, the journal Nature Materials estimated that 130 nanotech-based drugs and delivery systems were being developed worldwide.[8] Nanomedicine is a large industry, with nanomedicine sales reaching $6.8 billion in 2004. With over 200 companies and 38 products worldwide, a minimum of $3.8 billion in nanotechnology R&D is being invested every year.[9] As the nanomedicine industry continues to grow, it is expected to have a significant impact on the economy.
Nanotoxicology is the field which studies potential health risks of nanomaterials. The extremely small size of nanomaterials means that they are much more readily taken up by the human body than larger sized particles. How these nanoparticles behave inside the organism is one of the significant issues that needs to be resolved. The behavior of nanoparticles is a function of their size, shape and surface reactivity with the surrounding tissue. Apart from what happens if non-degradable or slowly degradable nanoparticles accumulate in organs, another concern is their potential interaction with biological processes inside the body: because of their large surface, nanoparticles on exposure to tissue and fluids will immediately adsorb onto their surface some of the macromolecules they encounter. The large number of variables influencing toxicity means that it is difficult to generalise about health risks associated with exposure to nanomaterials each new nanomaterial must be assessed individually and all material properties must be taken into account. Health and environmental issues combine in the workplace of companies engaged in producing or using nanomaterials and in the laboratories engaged in nanoscience and nanotechnology research. It is safe to say that current workplace exposure standards for dusts cannot be applied directly to nanoparticle dusts.
The extremely small size of nanomaterials also means that they are much more readily taken up by the human body than larger sized particles. How these nanoparticles behave inside the body is one of the issues that needs to be resolved. The behavior of nanoparticles is a function of their size, shape and surface reactivity with the surrounding tissue. They could cause overload on phagocytes, cells that ingest and destroy foreign matter, thereby triggering stress reactions that lead to inflammation and weaken the bodys defense against other pathogens. Apart from what happens if non-degradable or slowly degradable nanoparticles accumulate in organs, another concern is their potential interaction with biological processes inside the body: because of their large surface, nanoparticles on exposure to tissue and fluids will immediately adsorb onto their surface some of the macromolecules they encounter. This may, for instance, affect the regulatory mechanisms of enzymes and other proteins.
The National Institute for Occupational Safety and Health has conducted initial research on how nanoparticles interact with the bodys systems and how workers might be exposed to nano-sized particles in the manufacturing or industrial use of nanomaterials. NIOSH currently offers interim guidelines for working with nanomaterials consistent with the best scientific knowledge.[10] At The National Personal Protective Technology Laboratory of NIOSH, studies investigating the filter penetration of nanoparticles on NIOSH-certified and EU marked respirators, as well as non-certified dust masks have been conducted.[11] These studies found that the most penetrating particle size range was between 30 and 100 nanometers, and leak size was the largest factor in the number of nanoparticles found inside the respirators of the test dummies.[12][13]
Other properties of nanomaterials that influence toxicity include: chemical composition, shape, surface structure, surface charge, aggregation and solubility,[14] and the presence or absence of functional groups of other chemicals.[15] The large number of variables influencing toxicity means that it is difficult to generalise about health risks associated with exposure to nanomaterials each new nanomaterial must be assessed individually and all material properties must be taken into account.
Literature reviews have been showing that release of engineered nanoparticles and incurred personal exposure can happen during different work activities.[16][17][18] The situation alerts regulatory bodies to necessitate prevention strategies and regulations at nanotechnology workplaces.
The environmental impact of nanotechnology is the possible effects that the use of nanotechnological materials and devices will have on the environment.[19] As nanotechnology is an emerging field, there is debate regarding to what extent industrial and commercial use of nanomaterials will affect organisms and ecosystems.
Nanotechnology's environmental impact can be split into two aspects: the potential for nanotechnological innovations to help improve the environment, and the possibly novel type of pollution that nanotechnological materials might cause if released into the environment.
Green nanotechnology refers to the use of nanotechnology to enhance the environmental sustainability of processes producing negative externalities. It also refers to the use of the products of nanotechnology to enhance sustainability. It includes making green nano-products and using nano-products in support of sustainability. Green nanotechnology has been described as the development of clean technologies, "to minimize potential environmental and human health risks associated with the manufacture and use of nanotechnology products, and to encourage replacement of existing products with new nano-products that are more environmentally friendly throughout their lifecycle."[20]
Green nanotechnology has two goals: producing nanomaterials and products without harming the environment or human health, and producing nano-products that provide solutions to environmental problems. It uses existing principles of green chemistry and green engineering[21] to make nanomaterials and nano-products without toxic ingredients, at low temperatures using less energy and renewable inputs wherever possible, and using lifecycle thinking in all design and engineering stages.
Nanopollution is a generic name for all waste generated by nanodevices or during the nanomaterials manufacturing process. Nanowaste is mainly the group of particles that are released into the environment, or the particles that are thrown away when still on their products.
Beyond the toxicity risks to human health and the environment which are associated with first-generation nanomaterials, nanotechnology has broader societal impact and poses broader social challenges. Social scientists have suggested that nanotechnology's social issues should be understood and assessed not simply as "downstream" risks or impacts. Rather, the challenges should be factored into "upstream" research and decision-making in order to ensure technology development that meets social objectives[22]
Many social scientists and organizations in civil society suggest that technology assessment and governance should also involve public participation[23][24][25][26]
Over 800 nano-related patents were granted in 2003, with numbers increasing to nearly 19,000 internationally by 2012.[27] Corporations are already taking out broad-ranging patents on nanoscale discoveries and inventions. For example, two corporations, NEC and IBM, hold the basic patents on carbon nanotubes, one of the current cornerstones of nanotechnology. Carbon nanotubes have a wide range of uses, and look set to become crucial to several industries from electronics and computers, to strengthened materials to drug delivery and diagnostics. Carbon nanotubes are poised to become a major traded commodity with the potential to replace major conventional raw materials.[28]
Nanotechnologies may provide new solutions for the millions of people in developing countries who lack access to basic services, such as safe water, reliable energy, health care, and education. The 2004 UN Task Force on Science, Technology and Innovation noted that some of the advantages of nanotechnology include production using little labor, land, or maintenance, high productivity, low cost, and modest requirements for materials and energy. However, concerns are frequently raised that the claimed benefits of nanotechnology will not be evenly distributed, and that any benefits (including technical and/or economic) associated with nanotechnology will only reach affluent nations.[29]
Longer-term concerns center on the impact that new technologies will have for society at large, and whether these could possibly lead to either a post-scarcity economy, or alternatively exacerbate the wealth gap between developed and developing nations. The effects of nanotechnology on the society as a whole, on human health and the environment, on trade, on security, on food systems and even on the definition of "human", have not been characterized or politicized.
Significant debate exists relating to the question of whether nanotechnology or nanotechnology-based products merit special government regulation. This debate is related to the circumstances in which it is necessary and appropriate to assess new substances prior to their release into the market, community and environment.
Regulatory bodies such as the United States Environmental Protection Agency and the Food and Drug Administration in the U.S. or the Health & Consumer Protection Directorate of the European Commission have started dealing with the potential risks posed by nanoparticles. So far, neither engineered nanoparticles nor the products and materials that contain them are subject to any special regulation regarding production, handling or labelling. The Material Safety Data Sheet that must be issued for some materials often does not differentiate between bulk and nanoscale size of the material in question and even when it does these MSDS are advisory only.
Limited nanotechnology labeling and regulation may exacerbate potential human and environmental health and safety issues associated with nanotechnology.[30] It has been argued that the development of comprehensive regulation of nanotechnology will be vital to ensure that the potential risks associated with the research and commercial application of nanotechnology do not overshadow its potential benefits.[31] Regulation may also be required to meet community expectations about responsible development of nanotechnology, as well as ensuring that public interests are included in shaping the development of nanotechnology.[32]
In "The Consumer Product Safety Commission and Nanotechnology," E. Marla Felcher suggests that the Consumer Product Safety Commission, which is charged with protecting the public against unreasonable risks of injury or death associated with consumer products, is ill-equipped to oversee the safety of complex, high-tech products made using nanotechnology.[33]
Read more:
Impact of nanotechnology - Wikipedia
- Electronic Materials Company Cambrios Announces Closing $14.5 Million Round [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Europe's 'Extreme light infrastructure' project gears up for launch [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Industrial nanotechnology processes getting closer [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Konsultation zum Austria Nano-Aktionsplan [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Bewegungen von Viren auf Membranen live verfolgen [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Thailand Nanotechnology Conference on health, energy, environment [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Samsung Intensifies Advanced Foundry Logic Process Development with New Semiconductor Research Center [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Infineon and TSMC to Jointly Develop 65nm Embedded Flash Process Technology For Automotive and Chip Card Applications [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Abraxis Health Dedicates State of the Art Nanotechnology and Biologics Facility in Phoenix, Arizona [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Beneq Announces The First Continous Mode Atomic Layer Deposition Research Tool [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- An electron microscope with glasses [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Give your opinion on the Nanotechnology Research Code of Conduct [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Presentations from the OECD Conference on the Potential Environmental Benefits of Nanotechnology [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- DFI Nanotechnology Expands Into China With Strategic Alliance in Hong Kong [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Pre-announcement: Call for proposals within 'Energy Efficiency with Nanotechnology' [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- This week in nanotechnology [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- New funding for development and deployment of UAlbany nanofabrication strategies [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Applied Materials Acquires the Assets of Advent Solar [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Advanced Researcher Grant 2009 an Nanowissenschaftlerin Luisa de Cola [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Ocean Optics Launches Dedicated OEM Website [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- New synthetic molecules trigger immune response to HIV and prostate cancer [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Computer predicts reactions between molecules and surfaces, with 'chemical precision' [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Austria showcases its nanotechnology initiative [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Nanocapsules for artificial photosynthesis [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Work begins on laboratory for world's strongest microscope [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- New cancer detection method with fluorescent silica beads [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Die Magnetisierung einzelner Atome manipulieren [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Novel nanoparticles could become a safer alternative to gene therapy delivered by viruses [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- DOE awards Argonne, partners more than $7 million for solar energy-related research projects [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Magnetic nanoparticles to simultaneously diagnose, monitor and treat [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Study of ultracold atoms proves theory about universal quantum mechanism [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- RUSNANO Supervisory Council approves nanostructured non-metallic coatings project [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Julian Wess Award for outstanding achievements in elementary particle and astroparticle physics [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- New Pegasus300 Sold to Leading French Research Institute for CMOS Packaging [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Soitec Expands Into the Fast Growing Solar Energy Market With the Acquisition of Concentrix Solar [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Students send microbe nanobiotechnology experiment on Space Shuttle Atlantis [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Photovoltaic cells to power biological nanorobots inside the body [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Environmental and human health impacts of nanotechnology [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Elusive 'hot' electrons captured in ultra-thin solar cells [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Light-generating transistors to power labs on chips [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Combining rare-earth clusters with traditional metal catalysts reveals secrets of chemical transformation [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Hexagon Expands Its Offering in the Vision Metrology Business [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Azaya Therapeutics Receives FDA Authorization to Start Phase I Cancer Trial [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Researchers engineer bacteria to turn carbon dioxide into liquid fuel [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Argonne creates green home for world-class nanotechnology research [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- The mechanism behind superinsulation may lead to new types of electronics [Last Updated On: December 13th, 2009] [Originally Added On: December 13th, 2009]
- Biosensors change color when they detect specific neural messages [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- First measurement of cancer biomarkers in whole blood [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- Nanoprobes hit targets in tumors, could lessen chemo side effects [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- EYP/energy group joins UAlbany NanoCollege's National Institute for Sustainable Energy [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- Scientists isolate new antifreeze molecule in Alaska beetle [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- Ocean Optics XR-Series Spectrometers Cover 200-1050 nm Wavelengths [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- All-in-one cancer-killing nanoparticle can be tracked in real time with MRI [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- Nanobodies modifizieren die Form und Funktion von Proteinen [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- Elias A. Zerhouni, M.D. to Join Leica Microsystems' Parent Company Board of Directors [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- France to invest billions in nanotechnology [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- AlphaRx Appoints President for its China Operations [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- Vistec Enters Into Electron-Beam Lithograpy Project With Moscow University [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- Record-breaking ultrasensitive spectrometer identifies trace gases in real time [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- NanoMech Receives Navy Contract to Develop Nanotechnology Lubricant [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- Heart cells display a behavior-guiding 'nanosense' on new lab-on-a-chip [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- New curriculum mixes nanotechnology and skiing [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- Rexahn and TheraTarget Form Nanotechnology Research Collaboration [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- Unidym Enters Agreement to Integrate Carbon Nanotube Films Into LCDs [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- Carl Zeiss Meditec Closes Financial Year on a High [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- The Scott Partnership Appointed to Launch Innovative New Printed Electronics Business [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- New Centre for Molecular Epidemiology to put bacteria on the world map [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- New nanotechnology association established to address 21st century natural resource and energy security challenges [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- Analysis of information gathering initiatives on manufactured nanomaterials [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- OECD publishes manufactured nanomaterials roadmap 2010 [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- New imaging technique allows quick evaluation of graphene sheets [Last Updated On: December 14th, 2009] [Originally Added On: December 14th, 2009]
- National Institute of Standards and Technology invests up to $71 million in new manufacturing, infrastructure research and development [Last Updated On: December 16th, 2009] [Originally Added On: December 16th, 2009]
- Southwest Nanotechnologies Recieves Two Prestigious Research Grants To Deveop A New Generation of Carbon Nanotubes [Last Updated On: December 16th, 2009] [Originally Added On: December 16th, 2009]
- Nanolithographic technique allows multiple chemicals on a single chip [Last Updated On: December 16th, 2009] [Originally Added On: December 16th, 2009]
- Study documents puzzling movement of electricity-producing bacteria near energy sources [Last Updated On: December 16th, 2009] [Originally Added On: December 16th, 2009]
- Erstmals Daten aus lebenden Zellen: Optisches Verfahren misst molekulare Reaktionszeiten [Last Updated On: December 16th, 2009] [Originally Added On: December 16th, 2009]
- New Constant Diameter NeedleProbes with Unique Ability to Measure Liquid Surface Properties by AFM [Last Updated On: December 16th, 2009] [Originally Added On: December 16th, 2009]
- Chemical Nanotechnology Talks X: Green nano - challenges of sustainability [Last Updated On: December 16th, 2009] [Originally Added On: December 16th, 2009]
- Patents Issued for Licensed PAL-M Super-resolution Technology [Last Updated On: December 16th, 2009] [Originally Added On: December 16th, 2009]
- International Network CONTACT researches the use of carbon nanotubes in various applications [Last Updated On: December 16th, 2009] [Originally Added On: December 16th, 2009]