Bee antennae offer links between the evolution of social behavior … – Phys.Org

June 15, 2017 As bees' social behavior evolved, their complex chemical communication systems evolved in concert. An international team of researchers, including those from Princeton University, reported that a certain species of bees, called halictid bees, have more sensorial machinery compared with related solitary species. The difference is measured by the density of tiny, hollow sensory hairs called sensilla on their antennae. Credit: Sam Droege, U.S. Geological Survey

As bees' social behavior evolved, their complex chemical communication systems evolved in concert, according to a study published online by the journal Proceedings of the National Academy of Sciences.

An international team of researchers, including those from Princeton University, reported that a certain species of bees, called halictid bees, have more sensorial machinery compared with related solitary species. The difference is measured by the density of tiny, hollow sensory hairs called sensilla on their antennae.

Because social living requires the coordination of complex social behaviors, social insects invest more in these sensory systemsused to communicate information about resources, mates and sources of danger to their colonies and, therefore, are integral to survivalthan their solitary counterparts, according to Sarah Kocher, an associate research scholar at the Lewis-Sigler Institute for Integrative Genomics and the paper's corresponding author.

Kocher and her colleagues imaged the antennae of adult females from 36 species that Kocher netted in the wild, mostly in France, or secured from specimens from the Museum of Comparative Zoology in the Department of Organismic and Evolutionary Biology at Harvard University and the American Museum of Natural History in New York. Using a scanning electron microscope at Princeton, they obtained information about the antennae's surface topography and composition and observed convergent changes in both sensilla structures and the chemical signals of the groups as sociality was gained and lost.

Kocher and her colleagues chose to examine halictid bees because they exhibit remarkable diversity in social behavior, from eusocial to solitary. Eusocial refers to an organizational structure in which individual insects in a colony forgo their reproductive capacity and perform a specific task, such as caring for young or gathering food, as seen in many ant, wasp and honeybee species. Also, within this family of insects, social behavior has evolved independently several times, and there are numerous examples of reversion, or a reappearance of an earlier physical characteristic, and replicated losses of sociality. These repeated gains and losses make the species one of the most behaviorally diverse social insects on the planet, and good candidates for studying sociality, according to Kocher. "What we have is a system with tremendous comparative power," she said.

Relatively little is known about the evolutionary transition between solitary and social living, according to Kocher. But in this paper, "[The researchers] provide an elegant solution to this problem," said Tom Wenseleers, a professor of evolutionary biology at the University of Leuven in Belgium who is familiar with the research but had no role in it. "By studying a group of primitively eusocial insects that evolved sociality more recently and on several occasions reverted back to a solitary lifestyle, [they] succeed in making an accurate comparison of the investment in chemosensory systems made by social and derived, closely related, nonsocial species."

In the paper, the researchers also noted that ancestrally solitary halictid beesthose bees that had never evolved social behaviorshad sensilla densities similar to eusocial species, while secondarily solitary halictid beesthose bees that evolved from social to solitary and backexhibited decreases in sensilla density. Kocher was surprised by these patterns, but concluded that "sensilla density may be an important precursor to the evolution of social behavior."

"This study demonstrates that changes in social structure are reflected in changes to the sensory systems of insects," she said. "[It] not only illustrates the evolutionary shift from reproducing as an individual to having to coordinate reproduction as a group, but also how this behavioral change can create an evolutionary feedback loop in which traits are selected in order to increase sociality in subsequent generations."

Explore further: The high cost of communication among social bees

More information: Bernadette Wittwer et al, Solitary bees reduce investment in communication compared with their social relatives, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1620780114

(Phys.org)Eusocial insects are predominantly dependent on chemosensory communication to coordinate social organization and define group membership. As the social complexity of a species increases, individual members require ...

Cornell University scientists say the social behavior of many species of sweat bees evolved simultaneously during a period of global warming.

It's a clich to say it takes a village to raise a child, but it's a clich some creatures have taken to heart.

Research from North Carolina State University finds that among eusocial insects like ants, bees and termites the more individuals there are in a typical species colony, the weaker the species' immune response. The ...

The complex organisation of some insect societies is thought to have developed to such a level that these animals can no longer survive on their own. Research published in the online open access journal BMC Evolutionary Biology ...

In the world of evolutionary research, scientists studying the evolution of eusocial societies have traditionally relied on information gathered from studying terrestrial insects. A group of Columbia researchers, however, ...

Researchers from the University of York and the Quadram Institute have unlocked the genetic secrets of plant cell walls, which could help improve the quality of plant-based foods.

Research into yeast, the single-celled organism behind a range of human infections, has led to University of Otago Faculty of Dentistry researchers identifying a previously unknown piece of genetic sleight-of-hand which may ...

Type IV pili (T4P) are fascinating supermolecular machines that drive twitching motility, protein secretion, and DNA uptake in prokaryotes. T4P pili work as grappling hooks that cause bacterial twitching motility by a cycle ...

Almost all life on Earth is based on DNA being copied, or replicated. Now for the first time scientists have been able to watch the replication of a single DNA molecule, with some surprising findings. For one thing, there's ...

Scientists have developed a new technique for investigating the effects of gene deletion at later stages in the life cycle of a parasite that causes malaria in rodents, according to a new study in PLOS Pathogens. The novel ...

Scientists from Rutgers University-New Brunswick, the biotechnology company NAICONS Srl., and elsewhere have discovered a new antibiotic effective against drug-resistant bacteria: pseudouridimycin. The new antibiotic is produced ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

More here:

Bee antennae offer links between the evolution of social behavior ... - Phys.Org

Related Posts

Comments are closed.