It is difficult to go even one day without hearing terms that are intended to promote efforts to protect the global environment such as carbon neutrality, SDGs (Sustainable Development Goals), and ESG (Environmental, Social, and Governance) management. To achieve the Japanese and other state governments goal of balancing greenhouse gas (GHG) emissions by 2050, major technological breakthroughs are needed. Professor HASUNUMA Tomohisa (applied biochemistry, metabolic engineering), Director of the Engineering Biology Research Center, is a leading researcher in biotechnology. He uses genetically engineered smart cells of yeast,E. coli, and other bacteria to efficiently produce useful substitutes for petroleum and high valueadded functional materials. We interviewed Professor HASUNUMA, who is working to construct a next-generation, cross-disciplinary biorefinery that integrates biotechnology and digital technology, about his progress in his cutting-edge research.
Professor Hasunuma, you began as a researcher when you studied fermentation engineering at university. What was your motivation to major in fermentation engineering?
Hasunuma:I first became interested in biotechnology when my high school chemistry teacher stated that the age of biotechnology would come. Those words sparked my curiosity in biotechnology and I thought, I want to study living organisms at the molecular level based on chemistry, and then apply the research results to practical applications. I entered the Department of Biotechnology, Graduate School of Engineering, Osaka University, which was the center of fermentation science in Japan, and then continued to the doctoral course. The origin of microbial biotechnology is the study of brewing and fermentation of sake, miso, soy sauce, and other fermentable products.
As a student of Osaka University and a researcher of the Research Institute of Innovative Technology for the Earth (RITE), I studied plant biotechnology for carbon dioxide (CO2) reduction and worked on topics related to CO2reduction through vegetation expansion and material production. However, advances in research take a long time because higher plants have complex structures, which include roots, trunks, leaves, and other organs. Consistent with the change in RITEs research policy, I shifted my research focus to the cellular level with an emphasis on microorganisms, which are very simple.
Then you moved to Kobe University. Tell us more about that.
Hasunuma:When I started working at Kobe University in 2008, Professor FUKUDA Hideki, the former President of Kobe University and Professor KONDO Akihiko, the first Dean of the Graduate School of Science, Technology and Innovation, started an advanced fusion project called iBioK (Innovative BioProduction Kobe). With a grant of several billion yen over 11 years from the Japan Science and Technology Agency (JST), iBioK brought the best researchers in Japan to Kobe University to work on research and development of biorefinery. More than a dozen companies also participated. The project involved the construction of a value chain spanning the pretreatment of biomass, breeding of microorganisms, fermentation (material production), and separation and recovery of useful substances.
Will you please explain biorefinery?
Hasunuma:Biorefinery is an environmentally friendly technology that uses plants, which are sustainable resources, as raw materials to produce alternatives to fossil fuels and petrochemical products. The core of this technology is fermentation. Consequently, practical applications are difficult to achieve without improving the function of living organisms. In fact, in the 1990s, the realization of genome analysis technology to decipher entire genetic sequences of model organisms led to the so-called biotechnology boom. This boom attracted the attention of chemical and energy companies. Although bioproduction was attempted, this boom faded around 2000 because the organisms could not be controlled as expected and costs were high. Since then, advances in genome modification technology have made it possible to precisely control microorganisms. Additionally, the Paris Agreement signed in 2015 and the SDGs adopted by the United Nations have increased the global awareness of environmental issues. Under this context, expectations for the use of biotechnology in the bioeconomy and biomanufacturing have risen.
Can you tell us about the role of your research?
Hasunuma:Practical biorefineries will not be realized unless the production efficiency of useful substances by microorganisms is increased. Therefore, the Smart Cell Project, which aimed to develop microorganisms with a maximized substance production capacity, was implemented for 5 years starting in 2016. I participated as the R&D director. With funds totaling several billion yen from the New Energy and Industrial Technology Development Organization, a Japanese governmental R&D funding agency, the project united talented researchers across Japan, 16 universities, and 4 research institutes. Today, related research is ongoing and the technology is being developed.
Nowadays, it is not possible to survive the global R&D competition using only human power to manipulate, culture, and evaluate the production efficiency of genes of yeast,E. coli, etc. Advances in apparatuses that automate experiments have made it possible to develop smart cells more than ten times faster than manual work. At the end of 2021, we launched an autonomous experiment system called Autonomous Lab with Shimadzu Corporation. The Autonomous Lab integrates technologies and research results from different fields, including biotechnology, artificial intelligence (AI), and robotics. We call it biofoundry in an analogy to the foundries, which are semiconductor manufacturing plants. In Japan, Kobe University is the only university involved in such autonomous experimental efforts.
The biofoundry project has been selected for Kobe Universitys own Fostering Joint International Research.* You will be working on joint research with universities in the United States, Germany, France, the United Kingdom, China, Singapore, Taiwan, South Africa, and other countries. Can you tell us more about this project?
Hasunuma:The lab covers broad research themes as many things have yet to be understood. For example, how do smart cells grow and respond to environmental stresses? It is important to collaborate with researchers around the world to absorb missing knowledge and bolster our research. Due to the global presence of Kobe University, leading researchers from around the world are motivated to work with us. We will pursue research outcomes that cannot be achieved by Japanese researchers alone through international joint research.
You have founded a university-originating startup company with the aim of practical applications of research results, namely social implementation. Tell us more about this company.
Hasunuma:Yes, I am a technical advisor to Bacchus Bio Innovation, which I started with the encouragement of management experts at the Graduate School of Science, Technology and Innovation, Kobe University. Early-stage research is carried out at the university, but when the path to commercialization becomes clear, the research is handed over to Bacchus. For example, once highly efficient smart cells have been developed at the laboratory level, Bacchus will cultivate these smart cells in large quantities and deploy them in companies engaged in industrial production. We hope to achieve bio-first production, in which microorganisms are used to create not only petrochemical products such as fuels and plastics, but also cosmetics, supplements, and various other substances.
With the biofoundry in a full-scale operation, research is expected to accelerate. What are some of your mid- to long-term goals?
Hasunuma:As a researcher, I would like to clarify the reaction mechanisms occurring in living cells and to accurately understand metabolic mechanisms and other processes at the molecular level. As an engineer, I would like to develop technologies that can be linked to actual manufacturing and share the results of my research with the world.
Most importantly, we need to train more researchers in this field. There are not enough researchers who are familiar with both biotechnology and digital technology. In addition, there are not enough biotech researchers interested in robotics. Not only would I like to foster young researchers in these cross-disciplinary fields, but also like for them to gain international experience and expand their personal networks with overseas researchers. Executive Vice President KONDO guided me personally and cultivated my skills. Now, I have built a network of contacts with a variety of people, including those overseas. I believe that it is important to share such experiences with the next generation. Since it is crucial to integrate a wide range of research, I would like Kobe University to become an international center where talented individuals can gather to create a unique network of individuals whom we have fostered.
Visit link:
Bioengineering to achieve carbon neutrality - EurekAlert
- Production of ethanol from winter barley by the EDGE (enhanced dry grind enzymatic) process [Last Updated On: August 17th, 2024] [Originally Added On: April 29th, 2010]
- A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings [Last Updated On: August 17th, 2024] [Originally Added On: May 8th, 2010]
- Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance [Last Updated On: August 17th, 2024] [Originally Added On: May 25th, 2010]
- Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production [Last Updated On: August 17th, 2024] [Originally Added On: May 28th, 2010]
- Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant [Last Updated On: August 17th, 2024] [Originally Added On: June 10th, 2010]
- Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering [Last Updated On: August 17th, 2024] [Originally Added On: June 16th, 2010]
- Effects of enzyme feeding strategy on ethanol yield in fed-batch simultaneous saccharification and fermentation of spruce at high dry matter [Last Updated On: August 17th, 2024] [Originally Added On: June 26th, 2010]
- Impact of dual temperature profile in dilute acid hydrolysis of spruce for ethanol production [Last Updated On: August 17th, 2024] [Originally Added On: July 2nd, 2010]
- Ethanol production from mixtures of wheat straw and wheat meal [Last Updated On: August 17th, 2024] [Originally Added On: July 6th, 2010]
- Earning Cash – Selling Old Mobile Phones [Last Updated On: August 17th, 2024] [Originally Added On: July 7th, 2010]
- Earning Cash – Selling Old Mobile Phones [Last Updated On: August 17th, 2024] [Originally Added On: July 7th, 2010]
- Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding [Last Updated On: August 17th, 2024] [Originally Added On: August 3rd, 2010]
- Practical screening of purified cellobiohydrolases and endoglucanases with alpha-cellulose and specification of hydrodynamics [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- Cross-reactions between engineered xylose and galactose pathways in recombinant Saccharomyces cerevisiae [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2010]
- Automated saccharification assay for determination of digestibility in plant materials [Last Updated On: August 17th, 2024] [Originally Added On: November 7th, 2010]
- Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation [Last Updated On: August 17th, 2024] [Originally Added On: November 28th, 2010]
- Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment [Last Updated On: August 17th, 2024] [Originally Added On: December 11th, 2010]
- Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw [Last Updated On: August 17th, 2024] [Originally Added On: February 6th, 2011]
- Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates [Last Updated On: August 17th, 2024] [Originally Added On: February 14th, 2011]
- Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi [Last Updated On: August 17th, 2024] [Originally Added On: February 16th, 2011]
- Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides [Last Updated On: August 17th, 2024] [Originally Added On: February 22nd, 2011]
- Two-step synthesis of fatty acid ethyl ester from soybean oil catalyzed by Yarrowia lipolytica lipase [Last Updated On: August 17th, 2024] [Originally Added On: March 6th, 2011]
- Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides [Last Updated On: August 17th, 2024] [Originally Added On: March 17th, 2011]
- Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression [Last Updated On: August 17th, 2024] [Originally Added On: April 17th, 2011]
- Isolation of xylose isomerases by sequence- and function-based screening from a soil metagenome library [Last Updated On: August 17th, 2024] [Originally Added On: May 8th, 2011]
- Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw [Last Updated On: August 17th, 2024] [Originally Added On: May 15th, 2011]
- Effect of mixing on enzymatic hydrolysis of steam-pretreated spruce: a quantitative analysis of conversion and power consumption [Last Updated On: August 17th, 2024] [Originally Added On: May 15th, 2011]
- Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw [Last Updated On: August 17th, 2024] [Originally Added On: May 22nd, 2011]
- Investigation of tension wood formation and 2,6-dichlorbenzonitrile application in short rotation coppice willow composition and enzymatic saccharification [Last Updated On: August 17th, 2024] [Originally Added On: May 29th, 2011]
- Aiming the complete utilization of sugar beet pulp through mild acid and hydrothermal pretreatment followed by enzymatic digestion [Last Updated On: August 17th, 2024] [Originally Added On: June 5th, 2011]
- Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose [Last Updated On: August 17th, 2024] [Originally Added On: June 12th, 2011]
- In-situ lignocellulosic unlocking mechanism in termite for carbohydrate hydrolysis: critical lignin modification [Last Updated On: August 17th, 2024] [Originally Added On: June 19th, 2011]
- Supplementation with xylanase and beta-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover [Last Updated On: August 17th, 2024] [Originally Added On: June 26th, 2011]
- Co-hydrolysis of hydrothermal and dilute acid pretreated Populus slurries to support development of a high-throughput pretreatment system [Last Updated On: August 17th, 2024] [Originally Added On: July 17th, 2011]
- Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops [Last Updated On: August 17th, 2024] [Originally Added On: July 24th, 2011]
- Simultaneous saccharification and co-fermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media [Last Updated On: August 17th, 2024] [Originally Added On: July 31st, 2011]
- Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism [Last Updated On: August 17th, 2024] [Originally Added On: July 31st, 2011]
- Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases [Last Updated On: August 17th, 2024] [Originally Added On: August 7th, 2011]
- Functional characterization of cellulases identified from the cow rumen fungus neocallimastix patriciarum W5 by transcriptomic and secretomic analyses [Last Updated On: August 17th, 2024] [Originally Added On: August 21st, 2011]
- Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum [Last Updated On: August 17th, 2024] [Originally Added On: August 28th, 2011]
- Conversion of deoxynivalenol to 3-acetyldeoxynivalenol in barley derived fuel ethanol co-products with yeast expressing trichothecene 3-O-acetyltransferases [Last Updated On: August 17th, 2024] [Originally Added On: September 4th, 2011]
- Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover [Last Updated On: August 17th, 2024] [Originally Added On: September 11th, 2011]
- Impact of pretreatment and downstream processing technologies on economics and energy use in cellulosic ethanol production [Last Updated On: August 17th, 2024] [Originally Added On: September 11th, 2011]
- A kinetic model for quantitative evaluation of the effect of H2 and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus [Last Updated On: August 17th, 2024] [Originally Added On: September 18th, 2011]
- High level secretion of cellobiohydrolases by Saccharomyces cerevisiae [Last Updated On: August 17th, 2024] [Originally Added On: September 18th, 2011]
- How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis [Last Updated On: August 17th, 2024] [Originally Added On: September 25th, 2011]
- Bio-conversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14 [Last Updated On: August 17th, 2024] [Originally Added On: October 2nd, 2011]
- Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass [Last Updated On: August 17th, 2024] [Originally Added On: October 2nd, 2011]
- The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? [Last Updated On: August 17th, 2024] [Originally Added On: October 9th, 2011]
- Biotechnology [Last Updated On: August 17th, 2024] [Originally Added On: October 10th, 2011]
- Biology: Biotechnology: Gene Cloning [Last Updated On: August 17th, 2024] [Originally Added On: October 10th, 2011]
- What Does a Biotechnology Course Look Like? [Last Updated On: August 17th, 2024] [Originally Added On: October 10th, 2011]
- Demo day by SCT Biotechnology Branch 2011 passouts [Last Updated On: August 17th, 2024] [Originally Added On: October 12th, 2011]
- Biotechnology Program Video [Last Updated On: August 17th, 2024] [Originally Added On: October 12th, 2011]
- Introduction To Industrial Biotechnology [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2011]
- MSc Molecular Biotechnology -- Come to the School of Biosciences, University of Birmingham, UK - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2011]
- Oxbridge Biotechnology Roundtable - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- fermentation technology (biotechnology practical class) UNIVERSITY OF MALAYA - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- Biotechnology: Learn about New Biological Medicines in Development - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- The promoting effect of by-products from Irpex lacteus on subsequent enzymatic hydrolysis of bio-pretreated cornstalks [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- BiotechNaukri #Biotechnology Jobs - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- bio-technology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- BioBytes - Biotechnology and food flavoring - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 19th, 2011]
- Stine Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 22nd, 2011]
- Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: Changes in crystalline structure and effects on enzymatic digestibility [Last Updated On: August 17th, 2024] [Originally Added On: October 23rd, 2011]
- Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse [Last Updated On: August 17th, 2024] [Originally Added On: October 23rd, 2011]
- A cellular automaton model of crystalline cellulose hydrolysis by cellulases [Last Updated On: August 17th, 2024] [Originally Added On: October 23rd, 2011]
- Application of a Burkholderia cepacia lipase-immobilized silica monolith to the batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil [Last Updated On: August 17th, 2024] [Originally Added On: October 23rd, 2011]
- Algal Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 24th, 2011]
- Techniques of Biotechnology, Part 1 of 4 - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 25th, 2011]
- Biotechnology days in Macedonia II - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 26th, 2011]
- BioBytes: Forensics and Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 26th, 2011]
- Faces of Biotechnology: What is Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 26th, 2011]
- Mucosal and systemic responses/Dr Thomas Muster-AVIR Green Hills Biotechnology-World Vaccine - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 26th, 2011]
- Unlimited Income Potential in Bio-Technology, Part 1 - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 27th, 2011]
- Islam Ahmadiyya Questions: Biotechnology, Portraits, Ring, Prayers, Dreams, Adopted Children - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 28th, 2011]