Neurophobia among medical students and resident trainees in a … – BMC Medical Education

This study was the first structured survey of neurophobia among Chinese medical students and resident trainees, comprising 351 respondents from a tertiary teaching hospital in Beijing, China. Our results showed high difficulty and low confidence scores for neurology. This is in line with the results of prior studies in different parts of the world, including the United States, United Kingdom, Canada, South America, and Asian and African countries, revealing that neurophobia is a global issue across diverse educational systems [4,5,6,7,8, 12,13,14,15] (Table 3).

In this study, both medical students and residents agreed that neurology was the most difficult medical discipline, and they felt the least confident in dealing with patients with neurological problems, in contrast to the six other specialties in primary care settings. Two-thirds of the medical students and more than half of the resident trainees had neurophobia. This prevalence is higher than previous estimates by Jozefowcz [3] and a survey conducted in Singapore [7], indicating that neurophobia should be taken seriously in China. Over the past 30years, neurology perception has remained unchanged in contrast to the rapidly changing requirements for neurological care in an aging population. Medical education authorities and neurology educators should pay particular attention to these issues.

Consistent with previous studies [4, 6, 8], neuroanatomy was the main reason for difficulty in neurology. In the digital era, neuroanatomy education can be improved from conventional sectional images by employing innovative strategies, such as computer-based instructional 3-dimensional models, web-based neuroscience and neurology teaching videos, blended and flipped strategies, and problem-based effective teaching in neuroanatomy.

The poor integration of preclinical and clinical neurological teaching is another major complaint. Almost 80% of the medical students stated that a combination of neuroanatomy, neuroscience, and clinical neurology would be the best approach. Fragmentation in the learning of basic neuroscience with clinical neurology should be tackled by integrating basic neuroscience learning with early, effective, and multiple clinical exposures more efficiently under a neuro-mentorship program. Furthermore, introducing preclinical revision courses in areas such as neuroscience and neuroanatomy through case-based learning when students enter clinical training could be another useful approach.

In Peking Union Medical College, medical students are required to be involved in a total of 8weeks neurology attachment in the clerkship year (6th year) and internship year (7th year). The internal medicine residency training program included a 4-week rotation in the Department of Neurology at PUMCH. Some respondents suggested that the lack of rotation time and restricted exposure to neurological patients led them to consider neurology a difficult subject, which should be addressed urgently. In such a limited rotation time, multiple novel educational interventions would help students organize, re-engage, and manage their learning approaches for a deeper understanding through selfdirected, problem-based, and team-based learning.

In our study, a high proportion of the residents expected more online self-directed learning resources. Utilization of online resources in neurology teaching and its distinct success over other teaching approaches has been signified in prior studies [18,19,20,21]. Online teaching has been revealed to enhance neurology knowledge at the final clinical attachment and residency rotation stages compared to textbooks. The incorporation of video tutorials as part of the online educational approach could offer a reasonable addition to increasing patient exposure and bedside teaching for residents.

It is noteworthy that neurology is regarded as a difficult and challenging subject, but this did not reduce students interest in or enthusiasm for neurology, and a substantial number of medical students tended to pursue neurology in their future careers. However, once resident trainees begin clinical practice, they may become less neurophobic. Although there was a relatively wide range of neurophobias among medical students and young residents, a trend toward gradual improvement was observed. We speculate that ongoing neurological education and clinical exposure to overcome neurophobia will initially target medical students and then seamlessly continue via postgraduate education.

Owing to the unique, difficult, and complex nature of neurology, neurophobia has long existed worldwide, and our research reached the same conclusions. The presence of neurophobia in various medical communities around the globe raises concerns about its adverse effects on the quality of patient care and management. Researchers have presented several evidence-based recommendations for overcoming neurophobia. Neurology education curriculum reforms, a paradigm shift from a traditional knowledge-based curriculum to a student-centered, and competency-driven education [22], neuro-mentorship programs, evidence-based effective educational interventions, and problem-based and integrated learning, would be the way forward to removing neurophobia.

As China continues to grow, the need for physicians to adequately address the health needs of its population has become increasingly important. In the future, the government should provide more political support and financial investments to improve the overall capability of global cooperation and communication in neurology education, reinforce partnerships and cultures, identify differences between China and the rest of the world, propose targeted improvement measures to solve neurophobia, and ultimately provide excellent talent reserves for brain science in the twenty-first century.

This study had several limitations. This study was conducted in a single medical institution. PUMCH is a tertiary comprehensive teaching hospital in China and a national referral center offering diagnostic and therapeutic care for complex and rare disorders. Therefore, it may be difficult to generalize our findings to other Chinese medical schools and hospitals. Therefore, multi-center studies are required to confirm these conclusions. Investigations are also warranted to estimate whether intervention measures such as increased patient exposure, more online resources, and enhanced integration of neuroanatomy, neuroscience, and clinical neurology may result in better performance in neurology education.

More:
Neurophobia among medical students and resident trainees in a ... - BMC Medical Education

Related Posts

Comments are closed.