Smallest world record has 'endless possibilities' for bio-nanotechnology

PUBLIC RELEASE DATE:

8-Oct-2014

Contact: University of Leeds Press Office pressoffice@leeds.ac.uk 44-011-334-34196 University of Leeds @universityleeds

Scientists from the University of Leeds have taken a crucial step forward in bio-nanotechnology, a field that uses biology to develop new tools for science, technology and medicine.

The new study, published in print today in the journal Nano Letters, demonstrates how stable 'lipid membranes' the thin 'skin' that surrounds all biological cells can be applied to synthetic surfaces.

Importantly, the new technique can use these lipid membranes to 'draw' akin to using them like a biological ink with a resolution of 6 nanometres (6 billionths of a meter), which is much smaller than scientists had previously thought was possible.

"This is smaller than the active elements of the most advanced silicon chips and promises the ability to position functional biological molecules such as those involved in taste, smell, and other sensory roles with high precision, to create novel hybrid bio-electronic devices," said Professor Steve Evans, from the School of Physics and Astronomy at the University of Leeds and a co-author of the paper.

In the study, the researchers used something called Atomic Force Microscopy (AFM), which is an imaging process that has a resolution down to only a fraction of a nanometer and works by scanning an object with a miniscule mechanical probe. AFM, however, is more than just an imaging tool and can be used to manipulate materials in order to create nanostructures and to 'draw' substances onto nano-sized regions. The latter is called 'nano-lithography' and was the technique used by Professor Evans and his team in this research.

The ability to controllably 'write' and 'position' lipid membrane fragments with such high precision was achieved by Mr George Heath, a PhD student from the School of Physics and Astronomy at the University of Leeds and the lead author of the research paper.

Mr Heath said: "The method is much like the inking of a pen. However, instead of writing with fluid ink, we allow the lipid molecules the ink to dry on the tip first. This allows us to then write underwater, which is the natural environment for lipid membranes. Previously, other research teams have focused on writing with lipids in air and they have only been able to achieve a resolution of microns, which is a thousand times larger than what we have demonstrated."

Read more from the original source:

Smallest world record has 'endless possibilities' for bio-nanotechnology

Related Posts

Comments are closed.