Share
Share
Share
According to the similarity of the function and form of the algorithm, we can classify the algorithm, such as tree-based algorithm, neural network-based algorithm, and so on. Of course, the scope of machine learning is very large, and it is difficult for some algorithms to be clearly classified into a certain category.
Regression algorithm is a type of algorithm that tries to explore the relationship between variables by using a measure of error. Regression algorithm is a powerful tool for statistical machine learning. In the field of machine learning, when people talk about regression, sometimes they refer to a type of problem and sometimes a type of algorithm. This often confuses beginners.
Common regression algorithms include: Ordinary Least Square, Logistic Regression, Stepwise Regression, Multivariate Adaptive Regression Splines, and Locally Estimated Scatterplot Smoothing).
The regularization method is an extension of other algorithms (usually regression algorithms), and the algorithm is adjusted according to the complexity of the algorithm. Regularization methods usually reward simple models and penalize complex algorithms.
Common algorithms include: Ridge Regression, Least Absolute Shrinkage and Selection Operator (LASSO), and Elastic Net.
The decision tree algorithm uses a tree structure to establish a decision model based on the attributes of the data. The decision tree model is often used to solve classification and regression problems.
Common algorithms include: Classification and Regression Tree (CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection (CHAID), Decision Stump, Random Forest (Random Forest), multivariate Adaptive regression spline (MARS) and gradient boosting machine (Gradient Boosting Machine, GBM)
Case-based algorithms are often used to model decision-making problems. Such models often first select a batch of sample data, and then compare the new data with the sample data based on some similarity. In this way, the best match is found. Therefore, instance-based algorithms are often referred to as winner-takes-all learning or memory-based learning.
Common algorithms include k-Nearest Neighbor (KNN), Learning Vector Quantization (LVQ), and Self-Organizing Map (SOM).
Bayesian method algorithm is a kind of algorithm based on Bayes theorem, mainly used to solve classification and regression problems.
Common algorithms include: Naive Bayes algorithm, Averaged One-Dependence Estimators (AODE), and Bayesian Belief Network (BBN).
Clustering, like regression, sometimes people describe a type of problem, and sometimes a type of algorithm. Clustering algorithms usually merge the input data in a central point or hierarchical manner. All clustering algorithms try to find the internal structure of the data in order to classify the data according to the biggest common point.
Common clustering algorithms include k-Means algorithm and Expectation Maximization (EM).
Like clustering algorithms, dimensionality reduction algorithms try to analyze the internal structure of the data, but dimensionality reduction algorithms try to use less information to summarize or interpret data in an unsupervised learning manner. This type of algorithm can be used to visualize high-dimensional data or to simplify data for supervised learning.
Common algorithms include: Principle Component Analysis (PCA), Partial Least Square Regression (PLS), Sammon mapping, Multidimensional Scaling (MDS), Projection Pursuit (Projection Pursuit) Wait.
Association rule learning finds useful association rules in a large number of multivariate data sets by finding the rules that best explain the relationship between data variables.
Common algorithms include Apriori algorithm and Eclat algorithm.
The genetic algorithm simulates the mutation, exchange and Darwinian natural selection of biological reproduction (the survival of the fittest in every ecological environment).
It encodes the possible solutions of the problem into a vector, called an individual, each element of the vector is called a gene, and uses an objective function (corresponding to the natural selection criteria) to evaluate each individual in the group (a collection of individuals).
According to the evaluation value (fitness), genetic operations such as selection, exchange and mutation are performed on individuals to obtain a new population.
Genetic algorithms are suitable for very complex and difficult environments, such as with a lot of noise and irrelevant data, things are constantly updated, problem goals cannot be clearly and accurately defined, and the value of current behavior can be determined through a long execution process.
Artificial neural network algorithm simulates biological neural network and are a type of pattern matching algorithm. Usually used to solve classification and regression problems. Artificial neural networks are a huge branch of machine learning, with hundreds of different algorithms.
(Deep learning is one of the algorithms, we will discuss it separately), important artificial neural network algorithms include: Perceptron Neural Network, Back Propagation, Hopfield Network, Self-Organizing Map ( Self-Organizing Map, SOM).
Deep learning algorithms are the development of artificial intelligence . It has won a lot of attention recently, especially after Baidu has also begun to work hard on deep learning, which has attracted a lot of attention. With computing power becoming increasingly cheap today, deep learning is trying to build a much larger and more complex neural network.
Many deep learning algorithms are semi-supervised learning algorithms, which are used to process large data sets with a small amount of unidentified data.
Common deep learning algorithms include: Restricted Boltzmann Machine (RBN), Deep Belief Networks (DBN), Convolutional Network (Convolutional Network), and Stacked Auto-encoders.
The most famous of kernel-based algorithms is the support vector machine (SVM). The kernel-based algorithm maps the input data to a high-order vector space. In these high-order vector spaces, some classification or regression problems can be solved more easily.
Common kernel-based algorithms include: Support Vector Machine (SVM), Radial Basis Function (RBF), and Linear Discriminate Analysis (LDA), etc.
The ensemble algorithm uses some relatively weak learning models to independently train the same samples, and then integrates the results for overall prediction. The main difficulty of the integrated algorithm is which independent weaker learning models are integrated and how to integrate the learning results. This is a very powerful algorithm and also very popular.
Common algorithms include: Boosting, Bootstrapped Aggregation (Bagging), AdaBoost, Stacked Generalization (Stacked Generalization, Blending), Gradient Boosting Machine (GBM), Random Forest (Random Forest), GBDT (Gradient Boosting Decision Tree) .
There are many algorithms for machine learning. Many times, people are confused. Many algorithms are a type of algorithm, and some algorithms are extended from other algorithms. Here, we will introduce to you from two aspects. The first aspect is the way of learning, and the second aspect is the classification of algorithms.
Under supervised learning, the input data is called training data, and each set of training data has a clear identification or result, such as spam and non-spam in the anti-spam system, and recognition of handwritten numbers 1, 2, 3, 4 and so on.
When building a predictive model, supervised learning establishes a learning process that compares the predictive results with the actual results of the training data, and continuously adjusts the predictive model until the predictive result of the model reaches an expected accuracy rate.
Common application scenarios of supervised learning are classification problems and regression problems. Common algorithms are Logistic Regression and Back Propagation Neural Network.
In this learning mode, the input data is used as feedback to the model. Unlike the supervision model, the input data is only used as a way to check whether the model is right or wrong. Under reinforcement learning, the input data is directly fed back to the model. Make adjustments immediately.
Common application scenarios include dynamic systems and robot control. Common algorithms include Q-Learning and Temporal difference learning.
In unsupervised learning, the data is not specifically identified, and the learning model is to infer some internal structure of the data.Popular application scenarios involve association rules and clustering learning. Common algorithms include Apriori algorithm and k-Means algorithm.
In this learning mode, part of the input data is identified and part is not. This learning model can be used to make predictions, but the model first needs to learn the internal structure of the data in order to organize the data reasonably to make predictions.
Application scenarios include classification and regression. Algorithms include some extensions to commonly used supervised learning algorithms. These algorithms first try to model unidentified data, and then predict the identified data on this basis. Graph inference algorithm (Graph Inference) or Laplacian support vector machine (Laplacian SVM.) etc.
Read this article:
13 Algorithms and 4 Learning Methods of Machine Learning - TechBullion
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: August 18th, 2024] [Originally Added On: December 28th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: August 18th, 2024] [Originally Added On: December 28th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: August 18th, 2024] [Originally Added On: December 28th, 2019]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Limits of machine learning - Deccan Herald [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- How Will Your Hotel Property Use Machine Learning in 2020 and Beyond? | - Hotel Technology News [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Technology Trends to Keep an Eye on in 2020 - Built In Chicago [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- The 4 Hottest Trends in Data Science for 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Going Beyond Machine Learning To Machine Reasoning - Forbes [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Doctor's Hospital focused on incorporation of AI and machine learning - EyeWitness News [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Being human in the age of Artificial Intelligence - Deccan Herald [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Raleys Drive To Be Different Gets an Assist From Machine Learning - Winsight Grocery Business [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Break into the field of AI and Machine Learning with the help of this training - Boing Boing [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- BlackBerry combines AI and machine learning to create connected fleet security solution - Fleet Owner [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- What is the role of machine learning in industry? - Engineer Live [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Christiana Care offers tips to 'personalize the black box' of machine learning - Healthcare IT News [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Essential AI & Machine Learning Certification Training Bundle Is Available For A Limited Time 93% Discount Offer Avail Now - Wccftech [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- 2020: The year of seeing clearly on AI and machine learning - ZDNet [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- How machine learning and automation can modernize the network edge - SiliconANGLE [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Don't want a robot stealing your job? Take a course on AI and machine learning. - Mashable [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Optimising Utilisation Forecasting with AI and Machine Learning - Gigabit Magazine - Technology News, Magazine and Website [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning: Higher Performance Analytics for Lower ... [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning Definition [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning Market Size Worth $96.7 Billion by 2025 ... [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Difference between AI, Machine Learning and Deep Learning [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning in Human Resources Applications and ... [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Pricing - Machine Learning | Microsoft Azure [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- New York Institute of Finance and Google Cloud Launch A Machine Learning for Trading Specialization on Coursera - PR Web [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Machine learning - Wikipedia [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: August 18th, 2024] [Originally Added On: January 23rd, 2020]
- Machine learning and eco-consciousness key business trends in 2020 - Finfeed [Last Updated On: August 18th, 2024] [Originally Added On: January 24th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: August 18th, 2024] [Originally Added On: January 24th, 2020]
- Research report investigates the Global Machine Learning In Finance Market 2019-2025 - WhaTech Technology and Markets News [Last Updated On: August 18th, 2024] [Originally Added On: January 25th, 2020]
- Expert: Don't overlook security in rush to adopt AI - The Winchester Star [Last Updated On: August 18th, 2024] [Originally Added On: January 25th, 2020]
- Federated machine learning is coming - here's the questions we should be asking - Diginomica [Last Updated On: August 18th, 2024] [Originally Added On: January 25th, 2020]
- I Know Some Algorithms Are Biased--because I Created One - Scientific American [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Iguazio Deployed by Payoneer to Prevent Fraud with Real-time Machine Learning - Business Wire [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Want To Be AI-First? You Need To Be Data-First. - Forbes [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Technologies of the future, but where are AI and ML headed to? - YourStory [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- In Coronavirus Response, AI is Becoming a Useful Tool in a Global Outbreak - Machine Learning Times - machine learning & data science news - The... [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- This tech firm used AI & machine learning to predict Coronavirus outbreak; warned people about danger zones - Economic Times [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- 3 books to get started on data science and machine learning - TechTalks [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- JP Morgan expands dive into machine learning with new London research centre - The TRADE News [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Euro machine learning startup plans NYC rental platform, the punch list goes digital & other proptech news - The Real Deal [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- The ML Times Is Growing A Letter from the New Editor in Chief - Machine Learning Times - machine learning & data science news - The Predictive... [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Top Machine Learning Services in the Cloud - Datamation [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Combating the coronavirus with Twitter, data mining, and machine learning - TechRepublic [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Itiviti Partners With AI Innovator Imandra to Integrate Machine Learning Into Client Onboarding and Testing Tools - PRNewswire [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- Iguazio Deployed by Payoneer to Prevent Fraud with Real-time Machine Learning - Yahoo Finance [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- ScoreSense Leverages Machine Learning to Take Its Customer Experience to the Next Level - Yahoo Finance [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- How Machine Learning Is Changing The Future Of Fiber Optics - DesignNews [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- How to handle the unexpected in conversational AI - ITProPortal [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- SwRI, SMU fund SPARKS program to explore collaborative research and apply machine learning to industry problems - TechStartups.com [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- Reinforcement Learning (RL) Market Report & Framework, 2020: An Introduction to the Technology - Yahoo Finance [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- ValleyML Is Launching a Series of 3 Unique AI Expo Events Focused on Hardware, Enterprise and Robotics in Silicon Valley - AiThority [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- REPLY: European Central Bank Explores the Possibilities of Machine Learning With a Coding Marathon Organised by Reply - Business Wire [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- VUniverse Named One of Five Finalists for SXSW Innovation Awards: AI & Machine Learning Category - PRNewswire [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- AI, machine learning, robots, and marketing tech coming to a store near you - TechRepublic [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- Putting the Humanity Back Into Technology: 10 Skills to Future Proof Your Career - HR Technologist [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Twitter says AI tweet recommendations helped it add millions of users - The Verge [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Artnome Wants to Predict the Price of a Masterpiece. The Problem? There's Only One. - Built In [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Machine Learning Patentability in 2019: 5 Cases Analyzed and Lessons Learned Part 1 - Lexology [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- The 17 Best AI and Machine Learning TED Talks for Practitioners - Solutions Review [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Overview of causal inference in machine learning - Ericsson [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]