[The following is the first part of anInformation Technology and Innovation Foundation report.]
New techniques for improving plants and animals promise to reshape virtually every aspect of the relationship between humans and our environment for the better. Safer and more sustainable crops have already made enormous contributions to the economy and the environment, and genetically improved livestock and companion animals are close behind. Discovery of more precise, predictable, and easily used techniques derived directly from nature is dramatically accelerating this progress. But fears of the new have led to calls in many nations for precautionary regulation, which risks stifling agricultural innovation without any showing of need or benefit. There is a better way. This report discusses proposals for updating policies and regulations for agricultural biotechnology products in the United States to ensure they safeguard
This report discusses proposals for updating policies and regulations for agricultural biotechnology products in the United States to ensure they safeguard public and environmental health and animal welfare without discouraging needed innovations. An authoritative review of 10 years worth of academic literature has found that the scientific research conducted so far has not detected any significant hazards directly connected with the use of [genetically engineered] crops. This experience is evidence that the time is long past due for significant regulatory rollback in this field around the world. Good advice has already been offered as to the best ways for updating these regulations. Not all of it has been followed yet, leaving numerous opportunities for improvement by the new administration. This report recommends the following reforms:
BACKGROUND The single biggest obstacle slowing the wider dissemination of the considerable benefits from agricultural biotechnology innovations is unwarranted regulatory burdens across the world. The disparity between the degree of hazard or risk associated with these innovations and the regulatory hurdles they must clear has widened everywhere over the past three decades from a gap to a chasm. This has happened even while experience has shown that early safety concerns were unfounded, and that the predictability and safety associated with these innovations has been shown to be unmatched by the products of any other production method.
What Is Agricultural Biotechnology and Why Should We Care? Innovations in agriculture are being delivered today through a host of different techniques referred to with a baffling array of labels: recombinant DNA, genetically modified organisms (GMOs), genetic modification (GM), gene editing, CRISPR, TALENs, Zinc Fingers, meganucleases, advanced breeding, new breeding technologies, precision agriculture, big data, remote sensing, and more. There is some overlap among these terms both vis--vis the subject matter they cover and the ways in which they are used, but misunderstanding is widespread, and scientific justification for some of these terms is lacking or altogether absent.
When scientifically nonsensical terms are used as the foundation of discriminatory regulations, without due regard for hazard or risk, the resulting policies do not advance the protection of public and environmental health. This is the case for any and all regulations that single out GM processes or GMOs for regulatory scrutiny. Scientists and policy mavens spent years examining these issues in the late 1970s and early 1980s. They reached consensus that the process of genetic modification tells regulators nothing useful about any possible hazards of the resulting product, or the risks associated with different levels of exposure; these require consideration of the final characteristics and qualities of a productits phenotype. To use an example from manufacturing, a products safety does not depend on how a chemical is made, but rather on its chemical composition and structure. The same is true for food, feed, fiber, and animal products. Yet, for ideological or political reasons unsupported by data or experience, many nations regulators have adopted explicitly process-based regulations. Even countries that have avoided this fundamental error have drifted in that direction through
Yet, for ideological or political reasons unsupported by data or experience, many nations regulators have adopted explicitly process-based regulations. Even countries that have avoided this fundamental error have drifted in that direction through uncritical implementation of otherwise less flawed regulations that slow ag-biotech innovation. These different developments have combined to create the gross disparity between and within nations regarding risk and regulatory burden as manifested in regulatory proposals we examine here.
GM Food Is Safe The foundation of confidence in the safety of agricultural products produced through biotechnology, no matter what breeding method was used, lies in a concept known as substantial equivalence. This is based on the work of an international expert group at the Organization for Economic Cooperation and Development (OECD), which published a series of landmark policy papers in the 1980s and 1990s. The concept of substantial equivalence emerged from the recognition that plants and animals we have long used for food provide a familiar baseline for comparison and for the evaluation of novel traits as we consider their safety. A number of factors are important, including:
The U.S. National Academy of Sciences explicitly endorsed this approach in its first paper on this topic, and reaffirmed it in 11 subsequent reports, which corroborated the safety of products produced with these methods. The safety of these products was reaffirmed in a comprehensive review of more than 1,700 peer-reviewed papers from the scientific literature over a decade, published in 2013, adding to a database of more than 2,000 such papers compiled by independent academics. It is noteworthy that based on their findings, independent academics and industry scientists reach identical conclusions. For these reasons, more than 275 scientific organizations have embraced the global scientific consensus on the safety of GM crops and foods. The European Union has summarized the safety issue thus:
Indeed, the use of more precise technology and the greater regulatory scrutiny probably make them even safer than conventional plants and foods; and if there are unforeseen environmental effectsnone have appeared as yetthese should be rapidly detected by our monitoring requirements. On the other hand, the benefits of these plants and products for human health and the environment become increasingly clear.
Process-Based Regulation Doesnt Work In the early 1980s, when the potential of recombinant DNA techniques to deliver solutions to problems in agriculture was first widely noted, two main schools of thought emerged on the best way to ensure their safety without discouraging innovation. Expert bodies around the world repeatedly found no unique or novel hazards associated with crops, livestock, microbes, or foods improved through biotechnology. They found that the foreseeable risks were similar to those with which we were long familiar with from classical plant and animal breeding throughout 10 millennia of domestication and agriculture. As a result, the United States, Canada, and Australia aimed to base regulations on experience and scientific data. U.S. policymakers, for example, concluded that existing regulations for risk assessment and management were sufficient, and determined to move forward with products of agricultural biotechnology under close scrutiny, with a watchful eye for surprises. This was attended by the expectation that regulations would be adapted regularly as knowledge and understanding accrued.
European politicians chose a different approach, and crafted new, process-specific regulations unrelated to any concrete demonstration of real hazards or actual risks, based instead on hypothetical potential harms. Following this lead, a number of other countries have also taken this precautionary approach and subordinated the findings of scientific risk assessment and experience to political and ideological interests. The results have been clear and dramatic; innovative products have rapidly swept to market dominance in countries that have chosen science-based approaches, while European farmers have become increasingly uncompetitive as innovators have fled the continent. The harshest condemnations of the failed European precautionary approach have come from Europeans.
But despite this reasoned approach early on, regulations in the United States more recently have not evolved to match our accumulated experience and the dramatic growth in our understanding. Regulations first laid down in 1987 have been significantly adapted to experience only once, in 1992. Since then, the disparity between the level of risk and the degree of regulation has expanded dramatically. This led the White House Office of Science and Technology Policy in 2015 to call for an updating of regulatory agencies responsibilities under the Coordinated Framework, the 1986 roadmap set forth to guide regulators into the new landscape. The new Trump administrations directive that each new regulation must be accompanied by repeal of two already in place is, in this arena at least, a step in the right direction.
The Purpose of Regulation Is to Manage Risk Regulations exist for a purpose: to manage and mitigate risks. Reasonable and effective regulations will also incorporate a consideration of economic costs and dynamic innovation effects. Thus, under the 1986 Coordinated Framework, the Animal and Plant Health Inspection Service is charged with managing risks that crops improved through biotechnology may present to American agriculture; the Environmental Protection Agency with ensuring that pesticides are used safely to manage pests and protect human and environmental health; and the Food and Drug Administration with ensuring that food and feed derived from crops or animals improved through biotechnology are as safe to consume as other food and feed.
But much of the oversight applied to crops improved through biotechnology in the United States has lost sight of the fundamental principle for determining risk, expressed in the equation: risk equals hazard times exposure. If there is no prospect for exposure to a hazard, then the hazard, no matter how great, presents no risk. If there is no hazard, or if it is present only at very low levels, then even high levels of exposure may be entirely irrelevant to human or environmental health. But in the regulatory systems now in place there is no relationship among the presence of a hazard, the level of exposure, and the degree of regulatory scrutiny applied. If innovation is to be enabled, much less encouraged, that must be remedied. But the importance of one other objective driving the adoption of regulations to deal with biotechnological innovations in agriculture cannot be overstated:
But the importance of one other objective driving the adoption of regulations to deal with biotechnological innovations in agriculture cannot be overstated:
In response to public concern [t]he goal in developing the Coordinated Framework was to explain to the American public that, for questions involving the products of biotechnology (more specifically, organisms derived from recombinant-DNA technology), human health and the health of the environment were of paramount concern and were adequately protected.
There is no denying the virtuous intent of that sentiment, for if consumers are not convinced that biotech foods are safe they will not buy them. But in fact, the promulgation of regulations in advance of any confirmed finding of hazard or demonstration of risk has not assuaged public concerns. Nor has the subsequent confirmation of safety led to areduction in regulatory oversight or regulatory delays in the deployment of innovative technologies and products. In fact, entrenched opposition from the very beginning has taken every emplacement of regulation as confirmation of the need for yet more stringent regulation, driven by the unfounded assertion of unique and technology-specific hazards.
This discordance between the degree of regulatory oversight and the actual hazards and risks confirmed by experience has only grown over the years, exacerbated by the emergence of regulation for the purpose of litigation-avoidance by the agencies. Special interest groups have brought a significant number of procedural lawsuits against USDA for approving specific crops improved through biotechnology, leading to lengthy delays in the dissemination of new products.23 The ephemeral success of these lawsuits hinged on deficiencies noted by the courts in the documentation of USDAs decision-making process. In no case have they identified any genuine hazard, and, after USDA repaired the paper record for its decision making, the products are now on the market. But the opportunity costs, both economic and environmental, imposed by the delays remain on the ledgers.
[Read the rest of the report here.]
This article originally appeared on The Information Technology and Innovation Foundations website under the title How the Trump Administration Can Unshackle Innovation in Agricultural Biotechnology and has been republished with permission from the author.
Val Giddings is Senior Fellow at the Information Technology & Innovation Foundation. He previously served as vice president for Food & Agriculture of the Biotechnology Industry Organization (BIO) and at the Congressional Office of Technology Assessment and as an expert consultant to the United Nations Environment Programme, the World Bank, USDA, USAID, and companies, organizations and governments around the world. Follow him on twitter @prometheusgreen.
For more background on the Genetic Literacy Project, read GLP on Wikipedia
View original post here:
Agricultural biotechnology regulations are a mess Here's how Trump can unshackle innovation - Genetic Literacy Project
- Production of ethanol from winter barley by the EDGE (enhanced dry grind enzymatic) process [Last Updated On: August 17th, 2024] [Originally Added On: April 29th, 2010]
- A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings [Last Updated On: August 17th, 2024] [Originally Added On: May 8th, 2010]
- Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance [Last Updated On: August 17th, 2024] [Originally Added On: May 25th, 2010]
- Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production [Last Updated On: August 17th, 2024] [Originally Added On: May 28th, 2010]
- Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant [Last Updated On: August 17th, 2024] [Originally Added On: June 10th, 2010]
- Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering [Last Updated On: August 17th, 2024] [Originally Added On: June 16th, 2010]
- Effects of enzyme feeding strategy on ethanol yield in fed-batch simultaneous saccharification and fermentation of spruce at high dry matter [Last Updated On: August 17th, 2024] [Originally Added On: June 26th, 2010]
- Impact of dual temperature profile in dilute acid hydrolysis of spruce for ethanol production [Last Updated On: August 17th, 2024] [Originally Added On: July 2nd, 2010]
- Ethanol production from mixtures of wheat straw and wheat meal [Last Updated On: August 17th, 2024] [Originally Added On: July 6th, 2010]
- Earning Cash – Selling Old Mobile Phones [Last Updated On: August 17th, 2024] [Originally Added On: July 7th, 2010]
- Earning Cash – Selling Old Mobile Phones [Last Updated On: August 17th, 2024] [Originally Added On: July 7th, 2010]
- Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding [Last Updated On: August 17th, 2024] [Originally Added On: August 3rd, 2010]
- Practical screening of purified cellobiohydrolases and endoglucanases with alpha-cellulose and specification of hydrodynamics [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- Cross-reactions between engineered xylose and galactose pathways in recombinant Saccharomyces cerevisiae [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2010]
- Automated saccharification assay for determination of digestibility in plant materials [Last Updated On: August 17th, 2024] [Originally Added On: November 7th, 2010]
- Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation [Last Updated On: August 17th, 2024] [Originally Added On: November 28th, 2010]
- Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment [Last Updated On: August 17th, 2024] [Originally Added On: December 11th, 2010]
- Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw [Last Updated On: August 17th, 2024] [Originally Added On: February 6th, 2011]
- Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates [Last Updated On: August 17th, 2024] [Originally Added On: February 14th, 2011]
- Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi [Last Updated On: August 17th, 2024] [Originally Added On: February 16th, 2011]
- Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides [Last Updated On: August 17th, 2024] [Originally Added On: February 22nd, 2011]
- Two-step synthesis of fatty acid ethyl ester from soybean oil catalyzed by Yarrowia lipolytica lipase [Last Updated On: August 17th, 2024] [Originally Added On: March 6th, 2011]
- Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides [Last Updated On: August 17th, 2024] [Originally Added On: March 17th, 2011]
- Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression [Last Updated On: August 17th, 2024] [Originally Added On: April 17th, 2011]
- Isolation of xylose isomerases by sequence- and function-based screening from a soil metagenome library [Last Updated On: August 17th, 2024] [Originally Added On: May 8th, 2011]
- Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw [Last Updated On: August 17th, 2024] [Originally Added On: May 15th, 2011]
- Effect of mixing on enzymatic hydrolysis of steam-pretreated spruce: a quantitative analysis of conversion and power consumption [Last Updated On: August 17th, 2024] [Originally Added On: May 15th, 2011]
- Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw [Last Updated On: August 17th, 2024] [Originally Added On: May 22nd, 2011]
- Investigation of tension wood formation and 2,6-dichlorbenzonitrile application in short rotation coppice willow composition and enzymatic saccharification [Last Updated On: August 17th, 2024] [Originally Added On: May 29th, 2011]
- Aiming the complete utilization of sugar beet pulp through mild acid and hydrothermal pretreatment followed by enzymatic digestion [Last Updated On: August 17th, 2024] [Originally Added On: June 5th, 2011]
- Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose [Last Updated On: August 17th, 2024] [Originally Added On: June 12th, 2011]
- In-situ lignocellulosic unlocking mechanism in termite for carbohydrate hydrolysis: critical lignin modification [Last Updated On: August 17th, 2024] [Originally Added On: June 19th, 2011]
- Supplementation with xylanase and beta-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover [Last Updated On: August 17th, 2024] [Originally Added On: June 26th, 2011]
- Co-hydrolysis of hydrothermal and dilute acid pretreated Populus slurries to support development of a high-throughput pretreatment system [Last Updated On: August 17th, 2024] [Originally Added On: July 17th, 2011]
- Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops [Last Updated On: August 17th, 2024] [Originally Added On: July 24th, 2011]
- Simultaneous saccharification and co-fermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media [Last Updated On: August 17th, 2024] [Originally Added On: July 31st, 2011]
- Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism [Last Updated On: August 17th, 2024] [Originally Added On: July 31st, 2011]
- Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases [Last Updated On: August 17th, 2024] [Originally Added On: August 7th, 2011]
- Functional characterization of cellulases identified from the cow rumen fungus neocallimastix patriciarum W5 by transcriptomic and secretomic analyses [Last Updated On: August 17th, 2024] [Originally Added On: August 21st, 2011]
- Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum [Last Updated On: August 17th, 2024] [Originally Added On: August 28th, 2011]
- Conversion of deoxynivalenol to 3-acetyldeoxynivalenol in barley derived fuel ethanol co-products with yeast expressing trichothecene 3-O-acetyltransferases [Last Updated On: August 17th, 2024] [Originally Added On: September 4th, 2011]
- Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover [Last Updated On: August 17th, 2024] [Originally Added On: September 11th, 2011]
- Impact of pretreatment and downstream processing technologies on economics and energy use in cellulosic ethanol production [Last Updated On: August 17th, 2024] [Originally Added On: September 11th, 2011]
- A kinetic model for quantitative evaluation of the effect of H2 and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus [Last Updated On: August 17th, 2024] [Originally Added On: September 18th, 2011]
- High level secretion of cellobiohydrolases by Saccharomyces cerevisiae [Last Updated On: August 17th, 2024] [Originally Added On: September 18th, 2011]
- How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis [Last Updated On: August 17th, 2024] [Originally Added On: September 25th, 2011]
- Bio-conversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14 [Last Updated On: August 17th, 2024] [Originally Added On: October 2nd, 2011]
- Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass [Last Updated On: August 17th, 2024] [Originally Added On: October 2nd, 2011]
- The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? [Last Updated On: August 17th, 2024] [Originally Added On: October 9th, 2011]
- Biotechnology [Last Updated On: August 17th, 2024] [Originally Added On: October 10th, 2011]
- Biology: Biotechnology: Gene Cloning [Last Updated On: August 17th, 2024] [Originally Added On: October 10th, 2011]
- What Does a Biotechnology Course Look Like? [Last Updated On: August 17th, 2024] [Originally Added On: October 10th, 2011]
- Demo day by SCT Biotechnology Branch 2011 passouts [Last Updated On: August 17th, 2024] [Originally Added On: October 12th, 2011]
- Biotechnology Program Video [Last Updated On: August 17th, 2024] [Originally Added On: October 12th, 2011]
- Introduction To Industrial Biotechnology [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2011]
- MSc Molecular Biotechnology -- Come to the School of Biosciences, University of Birmingham, UK - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2011]
- Oxbridge Biotechnology Roundtable - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- fermentation technology (biotechnology practical class) UNIVERSITY OF MALAYA - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- Biotechnology: Learn about New Biological Medicines in Development - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- The promoting effect of by-products from Irpex lacteus on subsequent enzymatic hydrolysis of bio-pretreated cornstalks [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- BiotechNaukri #Biotechnology Jobs - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- bio-technology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- BioBytes - Biotechnology and food flavoring - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 19th, 2011]
- Stine Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 22nd, 2011]
- Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: Changes in crystalline structure and effects on enzymatic digestibility [Last Updated On: August 17th, 2024] [Originally Added On: October 23rd, 2011]
- Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse [Last Updated On: August 17th, 2024] [Originally Added On: October 23rd, 2011]
- A cellular automaton model of crystalline cellulose hydrolysis by cellulases [Last Updated On: August 17th, 2024] [Originally Added On: October 23rd, 2011]
- Application of a Burkholderia cepacia lipase-immobilized silica monolith to the batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil [Last Updated On: August 17th, 2024] [Originally Added On: October 23rd, 2011]
- Algal Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 24th, 2011]
- Techniques of Biotechnology, Part 1 of 4 - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 25th, 2011]
- Biotechnology days in Macedonia II - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 26th, 2011]
- BioBytes: Forensics and Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 26th, 2011]
- Faces of Biotechnology: What is Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 26th, 2011]
- Mucosal and systemic responses/Dr Thomas Muster-AVIR Green Hills Biotechnology-World Vaccine - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 26th, 2011]
- Unlimited Income Potential in Bio-Technology, Part 1 - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 27th, 2011]
- Islam Ahmadiyya Questions: Biotechnology, Portraits, Ring, Prayers, Dreams, Adopted Children - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 28th, 2011]