Researchers show fruit flies have latent bioluminescence

PUBLIC RELEASE DATE:

10-Apr-2014

Contact: Jim Fessenden james.fessenden@umassmed.edu 508-856-2000 University of Massachusetts Medical School

WORCESTER, Mass. New research from scientists at the University of Massachusetts Medical School shows that fruit flies are secretly harboring the biochemistry needed to glow in the dark otherwise known as bioluminescence.

The key to activating this latent ability is a novel synthetic analog of D-luciferin developed at UMMS. The findings, published in the journal Proceedings of the National Academy of Sciences, suggest that the inherent biochemistry needed for bioluminescence is more common than previously thought. Synthetic luciferins can unmask latent enzymatic activity capable of producing light in animals not known for their luminescence. This expands the scope of bioluminescence imaging for research, and adds new tools for the noninvasive studying of ongoing biological processes.

Few animals can naturally glow in the dark. The best known example, the firefly, creates bioluminescence when the small molecule D-luciferin is oxidized by the enzyme luciferase, which is only found in beetles.

The luciferase enzyme is believed to have evolved from the fatty acyl-CoA synthetases (ACSLs) found in all insects. Both classes of enzymes are members of the adenylate-forming superfamily and can activate fatty acids. But only luciferase catalyzes light emission from D-luciferin. Stephen C Miller, PhD, associate professor of biochemistry and molecular pharmacology at UMass Medical School, had previously found that some mutations in the luciferase enzyme reduce light emission from the natural D-luciferin substrate, but improve light emission when using synthetic luciferins developed in his lab.

"This suggested to us that the failure of insect ACSLs to emit light with the beetle luciferase substrate D-luciferin didn't necessarily mean they weren't capable of the biochemistry needed to glow," said Dr. Miller, senior author of the PNAS study.

He hypothesized that ACSL enzymes in other insects are capable of a bioluminescent reaction similar to the firefly. The key was finding a small molecule to fill the role of D-luciferin, which is not a substrate for ACSLs, to kick start the biochemical reaction.

Suspecting that D-luciferin was in fact a poor substrate for ACSLs due to its shape, Miller and colleagues David Mofford, a fourth year doctoral candidate in the Graduate School of Biomedical Sciences and first author of the study and Randheer Gadarla, PhD, postdoctoral research fellow, tested a number of synthetic luciferins he had developed to see if they had the geometry necessary to initiate bioluminescence using the fatty acyl-CoA synthetase CG6178 found in the fruit fly Drosophila melanogaster.

Here is the original post:

Researchers show fruit flies have latent bioluminescence

Related Posts

Comments are closed.