Automated discovery of symbolic laws governing skill acquisition from naturally occurring data – Nature.com

VanLehn, K. Cognitive skill acquisition. Ann. Rev. Psychol. 47, 513539 (1996).

Article Google Scholar

DeKeyser, R. in Skill Acquisition Theory 83104 (Routledge, 2020).

Tabibian, B. et al. Enhancing human learning via spaced repetition optimization. Proc. Natl Acad. Sci. USA 116, 39883993 (2019).

Article MathSciNet Google Scholar

Evans, N. J., Brown, S. D., Mewhort, D. J. & Heathcote, A. Refining the law of practice. Psychol. Rev. 125, 592 (2018).

Article Google Scholar

Heathcote, A., Brown, S. & Mewhort, D. J. The power law repealed: the case for an exponential law of practice. Psychon. Bull. Rev. 7, 185207 (2000).

Article Google Scholar

Shrager, J., Hogg, T. & Huberman, B. A. A graph-dynamic model of the power law of practice and the problem-solving fan-effect. Science 242, 414416 (1988).

Article Google Scholar

Wixted, J. T. The enigma of forgetting. Proc. Natl Acad. Sci. USA 119, e2201332119 (2022).

Article Google Scholar

Averell, L. & Heathcote, A. The form of the forgetting curve and the fate of memories. J. Math. Psychol. 55, 2535 (2011).

Article MathSciNet Google Scholar

Roediger III, H. L. Relativity of remembering: why the laws of memory vanished. Annu. Rev. Psychol. 59, 225254 (2008).

Article Google Scholar

Chiaburu, D. S. & Marinova, S. V. What predicts skill transfer? An exploratory study of goal orientation, training self-efficacy and organizational supports. Int. J. Train. Dev. 9, 110123 (2005).

Article Google Scholar

Sturm, L. P. et al. A systematic review of skills transfer after surgical simulation training. Ann. Surgery 248, 166179 (2008).

Article Google Scholar

Logan, G. D. Toward an instance theory of automatization. Psycho. Rev. 95, 492 (1988).

Article Google Scholar

Logan, G. D. Shapes of reaction-time distributions and shapes of learning curves: a test of the instance theory of automaticity. J. Exp. Psychol. 18, 883 (1992).

Google Scholar

Anderson, J. R. Acquisition of cognitive skill. Psychol. Rev. 89, 369 (1982).

Article Google Scholar

Tenison, C. & Anderson, J. R. Modeling the distinct phases of skill acquisition. J. Exp. Psychol. 42, 749 (2016).

Google Scholar

Tenison, C., Fincham, J. M. & Anderson, J. R. Phases of learning: how skill acquisition impacts cognitive processing. Cognitive Psychol. 87, 128 (2016).

Article Google Scholar

Jordan, M. I. Serial order: a parallel distributed processing approach. Adv. Pyschol. 121, 471495 (1997).

McClelland, J. L. et al. Parallel Distributed Processing Vol. 2 (MIT Press, 1986).

Young, R. M. & Lewis, R. L. in Models of Working Memory: Mechanisms of Active Maintenance and Executive Control 224256 (Cambridge Univ. Press, 1999).

Anderson, J. R., Matessa, M. & Lebiere, C. in HumanComputer Interaction Vol. 12, 439462 (Lawrence Erlbaum Associates, 1997).

Ritter, F. E., Tehranchi, F. & Oury, J. D. ACT-R: a cognitive architecture for modeling cognition. WIREs Cogn. Sci. 10, e1488 (2019).

Article Google Scholar

Goldstone, R. L. & Lupyan, G. Discovering psychological principles by mining naturally occurring data sets. Topics Cogn. Sci. 8, 548568 (2016).

Article Google Scholar

Jenkins, J. J., Cermak, L. & Craik, F. in Levels of Processing in Human Memory 429446 (Pyschology, 1979).

Udrescu, S.-M. & Tegmark, M. AI Feynman: a physics-inspired method for symbolic regression. Sci. Adv. 6, eaay2631 (2020).

Article Google Scholar

Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 4760 (2023).

Article Google Scholar

Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science 324, 8185 (2009).

Article Google Scholar

Cranmer, M. et al. Discovering symbolic models from deep learning with inductive biases. In 34th Conference on Neural Information Processing Systems 1742917442 (NeurIPS, 2020).

Rudy, S. H., Brunton, S. L., Proctor, J. L. & Kutz, J. N. Data-driven discovery of partial differential equations. Sci. Adv. 3, e1602614 (2017).

Article Google Scholar

Chen, Z., Liu, Y. & Sun, H. Physics-informed learning of governing equations from scarce data. Nat. Commun. 12, 6136 (2021).

Article Google Scholar

Margraf, J. T., Jung, H., Scheurer, C. & Reuter, K. Exploring catalytic reaction networks with machine learning. Nat. Catal. 6, 112121 (2023).

Article Google Scholar

Han, Z.-K. et al. Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence. Nat. Commun. 12, 1833 (2021).

Article Google Scholar

Wang, Y., Wagner, N. & Rondinelli, J. M. Symbolic regression in materials science. MRS Commun. 9, 793805 (2019).

Article Google Scholar

He, M. & Zhang, L. Machine learning and symbolic regression investigation on stability of mxene materials. Comput. Mater. Sci. 196, 110578 (2021).

Article Google Scholar

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436444 (2015).

Article Google Scholar

Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems 30 (NIPS, 2017).

Baker, F. B. The Basics of Item Response Theory (ERIC, 2001).

Hambleton, R. K., Swaminathan, H. & Rogers, H. J. Fundamentals of Item Response Theory Vol. 2 (Sage, 1991).

Swaminathan, H. & Gifford, J. A. Bayesian estimation in the three-parameter logistic model. Psychometrika 51, 589601 (1986).

Article MathSciNet Google Scholar

Maris, G. & Bechger, T. On interpreting the model parameters for the three parameter logistic model. Measurement 7, 7588 (2009).

Google Scholar

Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 4, 251257 (1991).

Article Google Scholar

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S. & Sohl-Dickstein, J. On the expressive power of deep neural networks. In Proc. 34th International Conference on Machine Learning 28472854 (PMLR, 2017).

Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2, 303314 (1989).

Article MathSciNet Google Scholar

Spearman, C. General intelligence, objectively determined and measured. Am. J. Psychol. 15, 201293 (1904).

Article Google Scholar

Eid, M., Geiser, C., Koch, T. & Heene, M. Anomalous results in g-factor models: explanations and alternatives. Psychol. Methods 22, 541 (2017).

Article Google Scholar

Steyvers, M. & Schafer, R. J. Inferring latent learning factors in large-scale cognitive training data. Nat. Hum. Behav. 4, 11451155 (2020).

Article Google Scholar

Simons, D. J. et al. Do brain-training programs work?. Psychol. Sci. Public Interest 17, 103186 (2016).

Article Google Scholar

Kievit, R. A. et al. Mutualistic coupling between vocabulary and reasoning supports cognitive development during late adolescence and early adulthood. Psychol. Sci. 28, 14191431 (2017).

Article Google Scholar

Kievit, R. A., Hofman, A. D. & Nation, K. Mutualistic coupling between vocabulary and reasoning in young children: a replication and extension of the study by Kievit et al. (2017). Psychol. Sci. 30, 12451252 (2019).

Article Google Scholar

Fisher, R. A. Design of experiments. Brit. Med. J. 1, 554 (1936).

Article Google Scholar

Kumar, A., Benjamin, A. S., Heathcote, A. & Steyvers, M. Comparing models of learning and relearning in large-scale cognitive training data sets. NPJ Sci. Learn. 7, 24 (2022).

Article Google Scholar

Liu, R. & Koedinger, K. R. Towards reliable and valid measurement of individualized student parameters. In Proc.10th International Conference on Educational Data Mining 135142 (International Educational Data Mining Society, 2017).

Koedinger, K. R., Carvalho, P. F., Liu, R. & McLaughlin, E. A. An astonishing regularity in student learning rate. Proc. Natl Acad. Sci. USA 120, e2221311120 (2023).

Article Google Scholar

Neath, A. A. & Cavanaugh, J. E. The bayesian information criterion: background, derivation, and applications. WIREs Comput. Stats 4, 199203 (2012).

Article Google Scholar

Vrieze, S. I. Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol. Methods 17, 228 (2012).

Article Google Scholar

Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In Proc. 33rd International Conference on Neural Information Processing Systems 80268037 (Curran Associates Inc., 2019).

Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2015).

Steyvers, M. & Benjamin, A. S. The joint contribution of participation and performance to learning functions: exploring the effects of age in large-scale data sets. Behav. Res. Methods 51, 15311543 (2019).

Article Google Scholar

The rest is here:
Automated discovery of symbolic laws governing skill acquisition from naturally occurring data - Nature.com

Related Posts

Comments are closed.