GuiltyTargets-COVID-19 web tool
We start by providing a high level overview about the capabilities of the GuiltyTargets-COVID-19 web tool. The web application initially allows the user to browse through a ranked list of potential targets generated using six bulk RNA-Seq and three single cell RNA-Seq datasets applied to a lung specific proteinprotein interaction (PPI) network reconstruction. Our website is also equipped with several filtering options to allow the user to quickly obtain the most relevant results. The candidate targets were ranked using a machine learning algorithm, GuiltyTargets19, which aims to quantify the degree of similarity of a candidate target to other known (candidate) drug targets. Further details about GuiltyTargets are outlined in the Methods section of this paper.
The user can retrieve a consensus ranking of any combination of datasets desired (Fig. 1). For each protein listed, its level of differential gene expression (upregulated, downregulated, no differential expressed) is displayed using a color coding system in addition to its association with COVID-19 as described in the literature. This latter feature is accomplished using an automated web search of scientific articles from PubMed that mention the protein in combination with COVID-19.
Though we provide nine different RNA-Seq datasets to explore, our tool also allows one to upload their own gene expression data. Uploaded data is sent through the GuiltyTargets algorithm and, after a short period of time, a ranking of candidate proteins is made available to the user to download and explore.
To further elucidate their linkage to known disease mechanisms, GuiltyTargets-COVID-19 enables one to explore the neighborhood of any given candidate target within the lung tissue specific PPI network reconstruction (Fig. 2). The network is labeled with information about known disease associations in humans in addition to virus-host interactions.
Importantly, in order to present the user with a list of possible drug candidates for a given protein, we parsed the ChEMBL database to generate a mapping of known ligands for each of the prioritized proteins and included this information in our web application. Direct links to the ligands description pages were added to GuiltyTargets-COVID-19 so that researchers can quickly explore the each compounds profile.
To point out potential target related safety issues, GuiltyTargets-COVID-19 includes a list of adverse effects for each target-linked compound, all of which were derived from the NSIDES database20. By making this information readily available, the user can quickly decide which compounds for a given target are most viable.
Altogether, GuiltyTargets-COVID-19 implements a comprehensive workflow involving computational target prioritization supplemented with annotations from several key databases.
Screenshot of the GuiltyTargets-COVID-19 web application available at https://guiltytargets-covid.eu/.
In the following sections, we demonstrate the utility of GuiltyTargets-COVID-19 based on the analysis of 6 bulk RNA-Seq and 3 single cell RNA-Seq datasets. A detailed overview of the data and workflow can be found in the Differential gene expression section of the Methods. In brief, GuiltyTargets-COVID-19 maps differentially expressed genes in each of these datasets to a lung tissue specific, genome-wide PPI network, which was constructed using data from BioGRID21, IntAct22 and STRING23 (see PPI Network Construction in Methods). Users can choose a combination of these datasets and the tool will present a ranking of each protein for each selected dataset based on its similarity to known drug targets. Additionally, a consensus ranking is also calculated if multiple datasets were selected.
For our analysis, we initially performed a ranking for each individual dataset. This ranking was performed using the GuiltyTargets positive-unlabeled machine learning algorithm19, which combines a PPI network, a differential gene expression (DGE) dataset, and a list of included nodes that are labeled as putative targets. Based on these results, GuiltyTargets then quantifies the probability that a candidate protein could be labeled as a target as well. In order to create a usable model, GuiltyTargets-COVID-19 was trained using a set of 218 proteins targeted by small compounds extracted from ChEMBL. This set of proteins was previously found to be involved in cellular response mechanisms specific to COVID-19 that have been shown to be transcriptionally dysregulated in several bulk RNA-Seq datasets15. The set of 218 proteins may thus be regarded as an extendable set of candidate targets. We chose this approach as there are currently very few approved drugs for COVID-19 (7 as of December 2022 in the European Union), hence making a machine learning model based ranking with respect to only known targets of approved drugs rather questionable.
In order to maximize transparency, GuiltyTargets-COVID-19 also reports the ranking performance of the GuiltyTargets machine learning algorithm that is calculated using the cross-validated area under receiver operator characteristic curve (AUC). As show in Fig. 6, the cross-validated AUCs found for each of the nine datasets used in this work were found to be between 85% and 90%, which align with the results reported in19. Additional details regarding the algorithms performance can be found in the Methods Section.
First degree neighbors of the (a) AKT3 and (b) PIK3CA proteins. Nodes are colored according to their associations: light orange means no virus or human association was found, dark orange indicates only human association, purple signifies viral association, and and dark blue nodes are proteins with associations to both viral mechanisms and human processes. The neighboring proteins and their associations for AKT3 and PIK3CA are outlined in Supplementary Data S1 and S2, respectively.
For our use case, we focused on proteins with a predicted target likelihood higher than 85% in each of the nine datasets. This resulted in 5167 candidate targets for each of the bulk RNA-Seq datasets and 4565 candidate targets for each of the scRNA-Seq datasets. By enabling the filter option novel in our web tool, we can select for those prioritized targets that are not among the original set of 218 proteins labeled as known targets and used for training the model.
Among these prioritized targets, there was a considerable difference between the analyzed bulk RNA-Seq data, with only a single protein target appearing among the top candidates for all 6 datasets: AKT3 (Fig. 3). AKT3 is of great interest in COVID-19 research as the PI3K/AKT signaling pathway plays a central role in cell survival. Moreover, researchers have observed an association between this pathway and coagulopathies in SARS-CoV-2 infected patients24. It has been suggested that the PI3K/AKT signaling pathway can be over-activated in COVID-19 patients either by direct or indirect mechanisms, thus suggesting this pathway may serve as a potential therapeutic target25.
To better understand the relationship of AKT3 with known COVID-19 disease mechanisms, the user can also download a CSV file comprised of the direct (first-degree) neighbors of AKT3 in the lung tissue specific PPI network used for our analysis. Each first-degree neighbor is additionally annotated to indicate whether the corresponding protein is associated with either the disease or with the virus itself. Figure 2a provides a visualization of the AKT3 neighbor network generated using Cytoscape 3.9.126.
Interestingly, a larger number of shared prioritized protein targets can be found among the scRNA-Seq data. Based on the 17 cell types identified in the three datasets, four common target candidates were identified: AKT2, AKT3, MAPK11, and MLKL. The presence of AKT3, as well as its isoform AKT2, in our list of prioritized targets supports the predicted association of the PI3K/AKT signaling pathway with COVID-19 as observed in our analysis of the bulk RNA datasets. Interestingly, our analysis of the single-cell datasets revealed two additional proteins of interest, MAPK11 and MLKL. MAPK11 is targeted by the compound losmapimod, which was tested against COVID-19 in a (terminated) phase III clinical trial (NCT04511819). The trial ended in August 2021 due to the rapidly evolving environment for the treatment of Covid-19 and ongoing challenges to identify and enroll qualified patients to participate (https://clinicaltrials.gov/ct2/show/NCT04511819). MLKL is a pseudokinase that plays a key role in TNF-induced necroptosis, a programmed cell death process. Recent evidence suggests that it can become dysregulated by the inflammatory response due to SARS-CoV-2 infection27. According to the DGldb database28 (which is cross-referenced by GuiltyTargets-COVID-19), the protein is also druggable and thus may serve as a therapeutic target.
Overall, these results demonstrate that GuiltyTargets-COVID-19 has the capability of identifying candidate targets with a clear disease association as well as assessing their potential druggability.
Venn diagram of the number of prioritized targets from the bulk RNA-Seq datasets.
After analyzing the top ranked protein targets shared by each group of RNA-Seq data, we next sought to characterize those candidates found in unique cell types (Table 1). Interestingly, we found that PIK3CA was only ranked among the top therapeutic candidates in goblet cells. Goblet cells are modified epithelial cells that secrete mucus on the surface of mucous membranes of organs, particularly those of the lower digestive tract and airways. Dactolisib is a compound targeting PIK3CA that has been tested in a phase II clinical trial for its ability to reduce COVID-19 disease severity (NCT04409327). The trial was terminated due to an insufficient accrual rate (https://clinicaltrials.gov/ct2/show/NCT04409327). Figure 2b depicts the PIK3CA protein and its first-degree neighbors as defined by the PPI network used in the GuiltyTargets-COVID-19 algorithm.
Another interesting drug we identified during our analysis is the compound varespladib, a compound that is currently being tested in a phase II clinical trial (NCT04969991) and which targets PLA2G2A, a potential protein target that primarily affects NKT cells (Table 1). To better support the user in finding more information about the disease context of such candidate targets, GuiltyTargets-COVID-19 also includes links to PubMed articles in which the protein and its roles in COVID-19 are discussed. Identification of relevant articles is discussed in the the Methods section.
Altogether, these results demonstrate that the tool presented here can be used for cell type specific target prioritization as well as aiding in characterizing the proteins in the context of COVID-19.
GuiltyTargets-COVID-19 also includes a feature for identifying small compound ligands from the ChEMBL database with reported activity (pChEMBL > 5) against candidate targets. In our use case, we were able to identify 186 ligands for AKT3, the top prioritized target across bulk RNA-Seq datasets. Furthermore, 126 ligands were mapped to the four candidate targets that were found among all single cell RNA-Seq datasets. A complete report of the number of ligands mapped to protein targets unique for a given cell type can be found in Table 2. We observed a high imbalance of mapped ligands for different cell types with secretory cells being targeted by the vast majority of compounds.
In total, these results demonstrate the ability of GuiltyTargets-COVID-19 to efficiently identify active ligands against candidate targets, thus supporting researchers in rapidly identifying potential new drugs for therapeutic intervention or repurposing.
An important factor that must be taken into consideration with new target candidates are the adverse events which are associated with the drugs targeting these proteins. To better assess the suggested therapeutics, we mapped significant adverse effects from the NSIDES database (http://tatonettilab.org/offsides) to the extracted ChEMBL compounds. Hence, each protein can be visualized in tandem with the ligands that target it, as well as any side effects found to be associated with the linked compounds. To showcase this feature, Fig. 4 depicts the AKT3 protein as well as its associated ligands and their side effects as shown in the GuiltyTargets-COVID-19 web application.
Screenshot of part of the adverse effect network for the AKT3 protein.
Read the rest here:
A machine learning method for the identification and ... - Nature.com
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: August 18th, 2024] [Originally Added On: December 28th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: August 18th, 2024] [Originally Added On: December 28th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: August 18th, 2024] [Originally Added On: December 28th, 2019]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Limits of machine learning - Deccan Herald [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- How Will Your Hotel Property Use Machine Learning in 2020 and Beyond? | - Hotel Technology News [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Technology Trends to Keep an Eye on in 2020 - Built In Chicago [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- The 4 Hottest Trends in Data Science for 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Going Beyond Machine Learning To Machine Reasoning - Forbes [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Doctor's Hospital focused on incorporation of AI and machine learning - EyeWitness News [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Being human in the age of Artificial Intelligence - Deccan Herald [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Raleys Drive To Be Different Gets an Assist From Machine Learning - Winsight Grocery Business [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Break into the field of AI and Machine Learning with the help of this training - Boing Boing [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- BlackBerry combines AI and machine learning to create connected fleet security solution - Fleet Owner [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- What is the role of machine learning in industry? - Engineer Live [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Christiana Care offers tips to 'personalize the black box' of machine learning - Healthcare IT News [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Essential AI & Machine Learning Certification Training Bundle Is Available For A Limited Time 93% Discount Offer Avail Now - Wccftech [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- 2020: The year of seeing clearly on AI and machine learning - ZDNet [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- How machine learning and automation can modernize the network edge - SiliconANGLE [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Don't want a robot stealing your job? Take a course on AI and machine learning. - Mashable [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Optimising Utilisation Forecasting with AI and Machine Learning - Gigabit Magazine - Technology News, Magazine and Website [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning: Higher Performance Analytics for Lower ... [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning Definition [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning Market Size Worth $96.7 Billion by 2025 ... [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Difference between AI, Machine Learning and Deep Learning [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning in Human Resources Applications and ... [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Pricing - Machine Learning | Microsoft Azure [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- New York Institute of Finance and Google Cloud Launch A Machine Learning for Trading Specialization on Coursera - PR Web [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Machine learning - Wikipedia [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: August 18th, 2024] [Originally Added On: January 23rd, 2020]
- Machine learning and eco-consciousness key business trends in 2020 - Finfeed [Last Updated On: August 18th, 2024] [Originally Added On: January 24th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: August 18th, 2024] [Originally Added On: January 24th, 2020]
- Research report investigates the Global Machine Learning In Finance Market 2019-2025 - WhaTech Technology and Markets News [Last Updated On: August 18th, 2024] [Originally Added On: January 25th, 2020]
- Expert: Don't overlook security in rush to adopt AI - The Winchester Star [Last Updated On: August 18th, 2024] [Originally Added On: January 25th, 2020]
- Federated machine learning is coming - here's the questions we should be asking - Diginomica [Last Updated On: August 18th, 2024] [Originally Added On: January 25th, 2020]
- I Know Some Algorithms Are Biased--because I Created One - Scientific American [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Iguazio Deployed by Payoneer to Prevent Fraud with Real-time Machine Learning - Business Wire [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Want To Be AI-First? You Need To Be Data-First. - Forbes [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Technologies of the future, but where are AI and ML headed to? - YourStory [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- In Coronavirus Response, AI is Becoming a Useful Tool in a Global Outbreak - Machine Learning Times - machine learning & data science news - The... [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- This tech firm used AI & machine learning to predict Coronavirus outbreak; warned people about danger zones - Economic Times [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- 3 books to get started on data science and machine learning - TechTalks [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- JP Morgan expands dive into machine learning with new London research centre - The TRADE News [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Euro machine learning startup plans NYC rental platform, the punch list goes digital & other proptech news - The Real Deal [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- The ML Times Is Growing A Letter from the New Editor in Chief - Machine Learning Times - machine learning & data science news - The Predictive... [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Top Machine Learning Services in the Cloud - Datamation [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Combating the coronavirus with Twitter, data mining, and machine learning - TechRepublic [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Itiviti Partners With AI Innovator Imandra to Integrate Machine Learning Into Client Onboarding and Testing Tools - PRNewswire [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- Iguazio Deployed by Payoneer to Prevent Fraud with Real-time Machine Learning - Yahoo Finance [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- ScoreSense Leverages Machine Learning to Take Its Customer Experience to the Next Level - Yahoo Finance [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- How Machine Learning Is Changing The Future Of Fiber Optics - DesignNews [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- How to handle the unexpected in conversational AI - ITProPortal [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- SwRI, SMU fund SPARKS program to explore collaborative research and apply machine learning to industry problems - TechStartups.com [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- Reinforcement Learning (RL) Market Report & Framework, 2020: An Introduction to the Technology - Yahoo Finance [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- ValleyML Is Launching a Series of 3 Unique AI Expo Events Focused on Hardware, Enterprise and Robotics in Silicon Valley - AiThority [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- REPLY: European Central Bank Explores the Possibilities of Machine Learning With a Coding Marathon Organised by Reply - Business Wire [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- VUniverse Named One of Five Finalists for SXSW Innovation Awards: AI & Machine Learning Category - PRNewswire [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- AI, machine learning, robots, and marketing tech coming to a store near you - TechRepublic [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- Putting the Humanity Back Into Technology: 10 Skills to Future Proof Your Career - HR Technologist [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Twitter says AI tweet recommendations helped it add millions of users - The Verge [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Artnome Wants to Predict the Price of a Masterpiece. The Problem? There's Only One. - Built In [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Machine Learning Patentability in 2019: 5 Cases Analyzed and Lessons Learned Part 1 - Lexology [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- The 17 Best AI and Machine Learning TED Talks for Practitioners - Solutions Review [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Overview of causal inference in machine learning - Ericsson [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]