Stress, DNA Damage, and p53

Researchers here outline one possible mechanism for the known association between chronic stress and biomarkers of health: "While the human mind and body are built to respond to stress - the well-known "fight or flight" response, which lasts only a few minutes and raises heart rate and blood glucose levels - the response itself can cause significant damage if maintained over long periods of time. When stress becomes chronic, this natural response can lead to a number of disease-related symptoms, including peptic ulcers and cardiovascular disorders. To make matters worse, evidence indicates that chronic stress eventually leads to DNA damage, which in turn can result in various neuropsychiatric conditions, miscarriages, cancer, and even aging itself. ... The newly uncovered mechanism involves ?-arrestin-1 proteins, ?2-adrenoreceptors (?2ARs), and the catecholamines, the classic fight-or-flight hormones released during times of stress - adrenaline, noradrenaline, and dopamine. Arrestin proteins are involved in modifying the cell's response to neurotransmitters, hormones, and sensory signals; adrenoceptors respond to the catecholamines noradrenaline and adrenaline. Under stress, the hormone adrenaline stimulates ?2ARs expressed throughout the body, including sex cells and embryos. Through a series of complex chemical reactions, the activated receptors recruit ?-arrestin-1, creating a signaling pathway that leads to catecholamine-induced degradation of the tumor suppressor protein p53, sometimes described as "the guardian of the genome." The new findings also suggest that this degradation of p53 leads to chromosome rearrangement and a build-up of DNA damage both in normal and sex cells." p53 is very important in a range of core cellular processes - anything touching on it usually turns out to be influential.

Link: http://www.kurzweilai.net/how-stress-causes-dna-damage

Source:
http://www.longevitymeme.org/newsletter/latest_rss_feed.cfm

Related Posts

Comments are closed.