Empas multicellular model, which is mimicking the placental barrier: a core of connective tissue cells, surrounded by trophoblast cells. Credit: Empa
An Empa team has succeeded in developing a new three-dimensional cell model of the human placental barrier. The "model organ" can quickly and reliably deliver new information on the intake of substances, such as nano-particles, by the placental barrier and on any possible toxic effects for the unborn child. This knowledge can also be used in the future for the development of new approaches to therapy during pregnancy.
During its development, the foetus is extremely susceptible to toxic substances. Even the tiniest doses can cause serious damage. In order to protect the unborn child,one of the tasks of the placenta is to act as a barrier to "filter out" harmful substances, while at the same time providing the foetus with the nutrients it needs. In recent years, however, evidence has increasingly suggested that the placental barrier is not 100 percent effective and that nano-particles are actually able to penetrate it.
Nano-particles are being used in ever more varied areas of our lives. They are used, for example, in sun creams to protect against sunburn; they are used in condiments to stop them getting lumpy; they are used to make outdoor clothing waterproof and they are likely to be used in the future to transport medicines to their rightful destinations in the body . "At the moment, pregnant women are not being exposed to problematic amounts of nano-particles, but in the future that could well happen due to the ever increasing use of these tiny particles," suggests Tina Buerki of the "Department of Particles-Biology Interactions."
In order to ensure the safe development of nano-particles in the most diverse areas of application, their absorption mechanism at the placental barrier and their effect on the mother, foetus and placenta itself must be looked at more closely. It is the size, charge, chemical composition and shape of the nano-particles that could have an influence on whether they actually penetrate the placental barrier and, if so, in what way they are able to do so. At the moment, however, this research is only in its infancy. Since the function and structure of the human placenta is unique, studies undertaken on pregnant mammals are problematic and often inconclusive. Traditional models of the human placental barrier are either very time consuming to construct, or are extremely simplified.
A 3-D model of the human placental barrier
Tests of this nature are best carried out on donated placentas that become available after childbirth by Caesarean section. The organs are connected as quickly as possible to a perfusion system and this ensures the tissue is provided with nutrients and oxygen. This model is, indeed, the most accurate, i.e. the most clinically relevant. It is, however, very technically demanding and, moreover,restricted to a perfusion time window of six to eight hours. Against that, such placentas can be used to reliably test the ability of any given nano-particle to penetrate the placental barrier. The model does not, however, yield any information on the mechanism used by the particle to penetrate this complex organ.
Researchers are therefore tending to fall back on the use of simple cell cultures and other modelling systems. An individual cell, possibly taken from the epithelium and subsequently cultivated and propagated in a petri dish, is perfectly suited to a whole range of different experiments. However, researchers cannot be certain that the cells in the petri dish will ultimately behave like those in the human body. The new model that the Empa team under Tina Buerki described in the scientific journal Nanoscale at the end of last year is, by contrast, three-dimensional and consists of more than one cell type. The cells exist in a tissue-like environment analogous to the placenta and can be experimented on for a longer period of time.
Golden test candidate
In order to create the model, the research team used the "hanging drop" technology developed by Insphero AG. This technology allows models to be created without "scaffolding," which can hinder free access of the nano-particles to the cells in the subsequent transport tests. Rather than introducing the cells in a flat petri dish, a special device, in which the cells in the hanging drops combine to form spherical micro-tissue, is used. The resulting micro-tissue mimics the human placenta much more closely than cells cultivated on a "rigid" culture dish. Experiments can be carried out much more quickly using the 3-D model than with the real placenta and, significantly, on the most widely differing types of nano-particle. In this way, those nano-particles that show potentially toxic effects or demonstrate desirable transport behaviour can be efficiently pre-selected and the results verified using a real placenta.
The model has already proved itself in a second study, which the team has just published in the scientific journal Nanomedicine. Buerki's team has come up with an absorption mechanism for gold particles that could be used in a range of medicinal applications. The Empa team looked at gold particles of various sizes and different surface modifications. In accordance with the results of other studies, the researchers discovered that small gold particles were able to penetrate the placental barrier more easily. In addition, fewer particles passed through the barrier if they were carrying polyethylene glycol (PEG) on their surfaces. These are chain-forming molecules that almost completely envelope the particles. PEG is often used in medicine to allow particles and other small structures to travel "incognito" in the body, thus preventing them being identified and removed by the immune system. "It therefore appears possible to control the movement of nano-particles through the placenta by means of their properties," Buerki explains.
Medicines for pregnant women that do not harm the child
Empa's research team is keen to further develop this 3-D model in the future. The team is hoping to augment the model using a dynamic component. This would, for example, mean introducing the micro-tissue in a micro-fluid system able to simulate blood circulation in the mother and child. Another approach would be to combine the model of the placenta with other models. "With the model of a foetus, for example," Buerki suggests. In this way, complex organ interactions could also be incorporated and it would be possible, for example, to discover whether the placenta releases foetus-damaging substances as a reaction to certain nano-particles.
"With these studies, we are hoping to lay the foundations for the safe but nevertheless effective use of nano-medicines during pregnancy," Buerki continued. If we understand the transport mechanisms of nano-materials through the placental barrier well enough, we believe we can develop new carrier systems for therapeutic agents that can be safely given to pregnant women. This is because many women are forced to take medicines even during pregnancy patients suffering from epilepsy or diabetes, for example, or patients that have contracted life-threatening infections. Nano-carriers must be chosen which are unable to penetrate the placental barrier. It is also possible, for example, to provide such carriers with "address labels," which ensure that the medicine shuttle is transported to the correct organ i.e. to the diseased organ and is unable to penetrate the placenta. This would allow the medicine to be released first and foremost into the mother. Consequently, the amounts absorbed by the foetus or embryoand therefore the risk to the unborn child are significantly reduced.
Explore further: New placenta model could reveal how birth defect-causing infections cross from mom to baby
Go here to see the original:
Medication for the unborn baby - Medical Xpress
- Is there an alternative to radiation [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Taiwan exploring how nanotech affects health [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- A new way of treating cancer on the way? [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Lasers can destroy cancer cells [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Fluorescent molecules can be biomarkers [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Quick blood tests by using a nanodevice [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Where will medicine be 20 years from now [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- History of nanotechnology [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Nanotech and Cancer [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Nanotechnology in medicine [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- How does cancer start [Last Updated On: January 25th, 2010] [Originally Added On: January 25th, 2010]
- Lung cancer symptoms [Last Updated On: January 26th, 2010] [Originally Added On: January 26th, 2010]
- Signs of breast cancer [Last Updated On: January 27th, 2010] [Originally Added On: January 27th, 2010]
- Famous people with cancer [Last Updated On: January 29th, 2010] [Originally Added On: January 29th, 2010]
- Metastatic renal cancer [Last Updated On: January 30th, 2010] [Originally Added On: January 30th, 2010]
- What causes skin cancer [Last Updated On: January 31st, 2010] [Originally Added On: January 31st, 2010]
- How many people die from cancer each year [Last Updated On: February 1st, 2010] [Originally Added On: February 1st, 2010]
- How much money is spent on cancer research [Last Updated On: February 2nd, 2010] [Originally Added On: February 2nd, 2010]
- Colon cancer warning signs [Last Updated On: February 4th, 2010] [Originally Added On: February 4th, 2010]
- Prostate cancer symptoms [Last Updated On: February 4th, 2010] [Originally Added On: February 4th, 2010]
- Carla wants to know [Last Updated On: August 17th, 2024] [Originally Added On: November 7th, 2010]
- I believe in Renewable Energy, and here's why [Last Updated On: August 17th, 2024] [Originally Added On: May 8th, 2011]
- I believe in Renewable Energy, and here's why [Last Updated On: August 17th, 2024] [Originally Added On: May 8th, 2011]
- Nanotechnology : Ms S. Naidoo - Nano Drug Delivery.wmv [Last Updated On: August 17th, 2024] [Originally Added On: October 12th, 2011]
- NanoMedicine Cancer Drug Delivery - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2011]
- ELSI of Regenerative Nanomedicine, Part 5 - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2011]
- DtaS - Nanomedicine - Part 2 - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- 2006 Winter, Nanomedicine A New Frontier for Physics - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 25th, 2011]
- Brian Plouffe on Nanomedicine IGERT @ Northeastern - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 29th, 2011]
- Nanomedicine in Europe: present and for the future - Video [Last Updated On: August 17th, 2024] [Originally Added On: November 1st, 2011]
- The Ethics of Nanomedicine, nanomedicine ethics , ethics in nanomedicine - Video [Last Updated On: August 17th, 2024] [Originally Added On: November 7th, 2011]
- Question to Alain Herrera about nanomedicine future - Video [Last Updated On: August 17th, 2024] [Originally Added On: November 7th, 2011]
- Nanomedicine MSc - A Student Perspective - Video [Last Updated On: August 17th, 2024] [Originally Added On: November 8th, 2011]
- Nanomedicine | Insights [Last Updated On: August 17th, 2024] [Originally Added On: November 9th, 2011]
- ELSI in Regenerative Nanomedicine, Part 2 - Video [Last Updated On: August 17th, 2024] [Originally Added On: November 16th, 2011]
- IdeasLab: Breakthroughs in Nanomedicine - Sonia Trigueros - Video [Last Updated On: August 17th, 2024] [Originally Added On: December 27th, 2011]
- Nanomedicine Panel BioEurope 2011 - manufacturing in nanomedicine - Video [Last Updated On: August 17th, 2024] [Originally Added On: December 29th, 2011]
- Nanomedicine Panel BioEurope 2011 - choice to work in nanomedicine - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 1st, 2012]
- Nanomedicine Panel BioEurope 2011 - importance of safety in nanomedicine - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 6th, 2012]
- Nanomedicine Panel BioEurope 2011 - communicate with regulatory agencies - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 6th, 2012]
- Bertrand Loubaton - Contribution of Nanomedicine to the global societal challenges - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 19th, 2012]
- Nanomedicine Panel BioEurope 2011 - Introduction by Laurent Levy - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 19th, 2012]
- Nanomedicine Panel BioEurope 2011 - clinical development - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 19th, 2012]
- Nanomedicine - YouTube.flv - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 19th, 2012]
- Warren Chan - Nanomedicine (part 1) - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 20th, 2012]
- Nanomedicine Panel BioEurope 2011 - expiration of patents - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 2nd, 2012]
- Nano tech is subject of pub talk [Last Updated On: August 17th, 2024] [Originally Added On: February 7th, 2012]
- President Obama Speaking about Nanotechnology [Last Updated On: August 17th, 2024] [Originally Added On: February 7th, 2012]
- OU nanoparticle research may fight cancer cells [Last Updated On: August 17th, 2024] [Originally Added On: February 7th, 2012]
- NanoYou - an introduction to Nanoscience narrated by Stephen Fry - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 7th, 2012]
- NanoMEDICINE and human upper limit - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 7th, 2012]
- NANOMOL Technology Platform - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 7th, 2012]
- Podcast : Nano Sized Medicine - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 7th, 2012]
- Medical Nanotechnology - James Stranger - Current Student Experience - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 12th, 2012]
- Local biotech company hopes save lives by focusing on microscopic cancer cells [Last Updated On: August 17th, 2024] [Originally Added On: February 13th, 2012]
- Tai chi helps ease symptoms of Parkinson's disease, study says [Last Updated On: August 17th, 2024] [Originally Added On: February 13th, 2012]
- Research and Markets: Handbook of Multiphase Polymer Systems, 2 Volume Set Is Ideal for Researchers in both Industry ... [Last Updated On: August 17th, 2024] [Originally Added On: February 15th, 2012]
- TES the largest network of teachers in the world [Last Updated On: August 17th, 2024] [Originally Added On: February 15th, 2012]
- Study implants chip that oozes out a daily dose of medicine as doctor orders by remote control [Last Updated On: August 17th, 2024] [Originally Added On: February 16th, 2012]
- Implantable microchip delivers medicine to women with osteoporosis [Last Updated On: August 17th, 2024] [Originally Added On: February 16th, 2012]
- Remote-controlled chip implant delivers bone drug [Last Updated On: August 17th, 2024] [Originally Added On: February 16th, 2012]
- Remote-controlled chip implant delivers meds [Last Updated On: August 17th, 2024] [Originally Added On: February 16th, 2012]
- Remote-control chip implant delivers drug [Last Updated On: August 17th, 2024] [Originally Added On: February 16th, 2012]
- Nano-technology uses virus' coats to fool cancer cells [Last Updated On: August 17th, 2024] [Originally Added On: February 17th, 2012]
- Implanted Chip Delivers Drugs Without a Thought [Last Updated On: August 17th, 2024] [Originally Added On: February 17th, 2012]
- Critical Pharmaceuticals And The University Of Nottingham To Develop Nano-Enabled Nasal Spray For Osteoporosis [Last Updated On: August 17th, 2024] [Originally Added On: February 17th, 2012]
- Nano-enabled nasal spray for osteoporosis [Last Updated On: August 17th, 2024] [Originally Added On: February 18th, 2012]
- One Way Trip to the Moon - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 21st, 2012]
- Remote-control chip delivers drug [Last Updated On: August 17th, 2024] [Originally Added On: February 22nd, 2012]
- Nanomedicine - Part 2 - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 22nd, 2012]
- Nanomedicine - Part 1 - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 22nd, 2012]
- Cost effective and toxix medicine for cancer [Last Updated On: August 17th, 2024] [Originally Added On: February 24th, 2012]
- Nanomedicine Release of neurological drugs - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 24th, 2012]
- 28101 video abstract - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 25th, 2012]
- Allocation for science promotion negligible, says CCMB Director [Last Updated On: August 17th, 2024] [Originally Added On: February 28th, 2012]
- Nano-rockets carrying medicine through body closer to reality [Last Updated On: August 17th, 2024] [Originally Added On: February 29th, 2012]
- Motion in Acid - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 29th, 2012]
- Study: Old flu drug speeds brain injury recovery [Last Updated On: August 17th, 2024] [Originally Added On: March 1st, 2012]
- Flu drug speeds up brain recovery [Last Updated On: August 17th, 2024] [Originally Added On: March 1st, 2012]
- Hometownstations.com-WLIO- Lima, OH News Weather SportsStudy: Old flu drug speeds brain injury recovery [Last Updated On: August 17th, 2024] [Originally Added On: March 1st, 2012]