Medical microrobots in reproductive medicine from the bench to the … – Nature.com

World Health Organization (WHO). https://www.who.int/news-room/fact-sheets/detail/infertility (2020).

de los Santos, M. J. et al. ESHRE guideline group on good practice in IVF labs. Hum. Reprod. 31, 130 (2015).

Ombelet, W., Cooke, I., Dyer, S., Serour, G. & Devroey, P. Infertility and the provision of infertility medical services in developing countries. Hum. Reprod. Update 14, 605621 (2008).

Google Scholar

Kadi, S. & Wiesing, U. The German IVF Register as an instrument to document assisted reproductive technologies. Geburtshilfe und Frauenheilkunde 76, 680684 (2019).

Glujovsky, D., Farquhar, C., Quinteiro Retamar, A. M., Alvarez Sedo, C. R. & Blake, D. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst. Rev. 30, CD002118 (2016).

Google Scholar

Fordham, D. E. et al. Embryologist agreement when assessing blastocyst implantation probability: is data-driven prediction the solution to embryo assessment subjectivity? Hum. Reprod. 37, 22752290 (2022).

Google Scholar

De Croo, I., Van der Elst, J., Everaert, K., De Sutter, P. & Dhont, M. Fertilization, pregnancy and embryo implantation rates after ICSI with fresh or frozen-thawed testicular spermatozoa. Hum. Reprod. 13, 18931897 (1998).

Google Scholar

Bashiri, A., Halper, K. I. & Orvieto, R. Recurrent implantation failure-update overview on etiology, diagnosis, treatment and future directions. Reprod. Biol. Endocrinol. 16, 118 (2018).

Google Scholar

Cimadomo, D., Craciunas, L., Vermeulen, N., Vomstein, K. & Toth, B. Definition, diagnostic and therapeutic options in recurrent implantation failure: an international survey of clinicians and embryologists. Hum. Reprod. 36, 305317 (2021).

CAS Google Scholar

Cohen, J. The efficiency and efficacy of IVF and GIFT. Hum. Reprod. 6, 613618 (1991).

CAS Google Scholar

Simon, A. & Laufer, N. Assessment and treatment of repeated implantation failure (RIF). J. Assist. Reprod. Genet. 29, 12271239 (2012).

Google Scholar

Weissman, A. et al. Zygote intrafallopian transfer among patients with repeated implantation failure. Int. J. Gynecol. Obstet. 120, 7073 (2013).

Google Scholar

Busnelli, A., Somigliana, E., Cirillo, F., Baggiani, A. & Levi-Setti, P. E. Efficacy of therapies and interventions for repeated embryo implantation failure: a systematic review and meta-analysis. Sci. Rep. 11, 1747 (2021).

ADS CAS Google Scholar

Tournaye, H. et al. Tubal transfer: a forgotten ART? Hum. Reprod. 11, 19871990 (1996).

Google Scholar

Ruiz-Alonso, M. et al. The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure. Fertil. Steril. 100, 818824 (2013).

Google Scholar

Eytan, O., Elad, D., Zaretsky, U. & Jaffa, A. J. A glance into the uterus during in vitro simulation on embryo transfer. Hum. Reprod. 19, 562569 (2004).

Google Scholar

Medina-Snchez, M. et al. Medical microbots need better imaging and control. Nature 545, 406408 (2017).

ADS Google Scholar

Schwarz, L. et al. A rotating spiral micromotor for noninvasive zygote transfer. Adv. Sci. 7, 2000843 (2020).

CAS Google Scholar

Rivkin, B. et al. Electronically integrated microcatheters based on self-assembling polymer films. Sci. Adv. 7, eabl5408 (2021).

ADS CAS Google Scholar

Matsuda, T. & Kawahara, D. Electrospinning fabrication of high-trackable catheter tip with gradually graded or gradient flexibility. J. Biomed. Mater. Res. Part B Appl. Biomater. 87, 3541 (2008).

Google Scholar

Jeon, S. et al. A magnetically controlled soft microrobot steering a guidewire in a three-dimensional phantom vascular network. Soft Robot. 6, 5468 (2019).

Google Scholar

Piskarev, Y. et al. A variable stiffness magnetic catheter made of a conductive phase-change polymer for minimally invasive surgery. Adv. Funct. Mater. 32, 2107662 (2022).

CAS Google Scholar

Mattmann, M. et al. Thermoset shape memory polymer variable stiffness 4D robotic catheters. Adv. Sci. 9, 2103277 (2022).

Google Scholar

Misra, S., Reed, K. B., Schafer, B. W., Ramesh, K. T. & Okamura, A. M. Mechanics of flexible needles robotically steered through soft tissue. Int. J. Rob. Res. 29, 16401660 (2010).

CAS Google Scholar

Goudu, S. R. et al. Biodegradable untethered magnetic hydrogel milli-grippers. Adv. Funct. Mater. 30, 2004975 (2020).

CAS Google Scholar

Breger, J. C. et al. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl. Mater. Interfaces 7, 33983405 (2015).

CAS Google Scholar

Rajabasadi, F., Schwarz, L., Medina-Snchez, M. & Schmidt, O. G. 3D and 4D lithography of untethered microrobots. Prog. Mater. Sci. 120, 100808 (2021).

CAS Google Scholar

Rajabasadi, F. et al. Multifunctional 4D-printed sperm-hybrid microcarriers for assisted reproduction. Adv. Mater. 34, 2204257 (2022).

CAS Google Scholar

Aziz, A., Holthof, J., Meyer, S., Schmidt, O. G. & Medina-Snchez, M. Dual ultrasound and photoacoustic tracking of magnetically driven micromotors: from in vitro to in vivo. Adv. Healthc. Mater. 10, 2101077 (2021).

CAS Google Scholar

Simerly, C. R. et al. Assisted reproductive technologies (ART) with baboons generate live offspring: a nonhuman primate model for ART and reproductive sciences. Reprod. Sci. 17, 917930 (2010).

CAS Google Scholar

Kadiri, V. M. et al. Light- and magnetically actuated FePt microswimmers. Eur. Phys. J. E 44, 74 (2021).

CAS Google Scholar

FDA. Biological evaluation of medical devices. http://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-international-standard-iso-10993-1-biological-evaluation-medical-devices-part-1-evaluation-and (2016).

Ceylan, H. et al. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano 13, 33533362 (2019).

CAS Google Scholar

Giltinan, J., Sridhar, V., Bozuyuk, U., Sheehan, D. & Sitti, M. 3D microprinting of iron platinum nanoparticlebased magnetic mobile microrobots. Adv. Intell. Syst. 3, 2000204 (2021).

Google Scholar

Jessel, N. et al. Bioactive coatings based on a polyelectrolyte multilayer architecture functionalized by embedded proteins. Adv. Mater. 24, 3341 (2003).

Google Scholar

Qiu, F. et al. Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv. Funct. Mater. 25, 16661671 (2015).

CAS Google Scholar

Wu, Z. et al. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4, eaax0613 (2019).

Google Scholar

Yasa, I. C., Ceylan, H., Bozuyuk, U., Wild, A. M. & Sitti, M. Elucidating the interaction dynamics between microswimmer body and immune system for medical microrobots. Sci. Robot. 5, eaaz3867 (2020).

Google Scholar

Zhang, H., Li, Z., Wu, Z. & He, Q. Cancer cell membrane-camouflaged micromotor. Adv. Ther. 2, 1900096 (2019).

ADS CAS Google Scholar

Cabanach, P. et al. Zwitterionic 3Dprinted nonimmunogenic stealth microrobots. Adv. Mater. 32, 2003013 (2020).

CAS Google Scholar

Wu, Z. et al. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci. Adv. 4, eaat4388 (2018).

ADS CAS Google Scholar

Venugopalan, P. L., Jain, S., Shivashankar, S. & Ghosh, A. Single coating of zinc ferrite renders magnetic nanomotors therapeutic and stable against agglomeration. Nanoscale 10, 23272332 (2018).

CAS Google Scholar

Medina-Snchez, M., Magdanz, V., Guix, M., Fomin, V. M. & Schmidt, O. G. Swimming microrobots: soft, reconfigurable, and smart. Adv. Funct. Mater. 28, 1707228 (2018).

Google Scholar

Tipnis, N. P. & Burgess, D. J. Sterilization of implantable polymer-based medical devices: A review. Int. J. Pharm. 544, 455460 (2018).

CAS Google Scholar

Xu, H. et al. Sperm-hybrid micromotor for targeted drug delivery. ACS Nano 12, 327337 (2018).

CAS Google Scholar

Medina-Snchez, M., Schwarz, L., Meyer, A. K., Hebenstreit, F. & Schmidt, O. G. Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett. 16, 555561 (2016).

ADS Google Scholar

Xu, H., Medina-Snchez, M., Maitz, M. F., Werner, C. & Schmidt, O. G. Sperm micromotors for cargo delivery through flowing blood. ACS Nano 14, 29822993 (2020).

CAS Google Scholar

Diemer, J., Hahn, J., Goldenbogen, B., Mller, K. & Klipp, E. Sperm migration in the genital tract-In silico experiments identify key factors for reproductive success. PLoS Comput. Biol. 17, 117 (2021).

Google Scholar

Herman, I. P. in Physics of the Human Body Ch. 7 (Springer, 2016).

Aziz, A. et al. Medical imaging of microrobots: toward in vivo applications. ACS Nano 14, 1086510893 (2020).

CAS Google Scholar

Aziz, A., Medina-Snchez, M., Claussen, J. & Schmidt, O. G. Real-time optoacoustic tracking of single moving micro-objects in deep phantom and ex vivo tissues. Nano Lett. 19, 66126620 (2019).

ADS CAS Google Scholar

Emanuel, A. L. et al. Contrast-enhanced ultrasound for quantification of tissue perfusion in humans. Microcirculation 27, e12588 (2020).

Google Scholar

Shi, C. et al. Application of a sub-0.1-mm3 implantable mote for in vivo real-time wireless temperature sensing. Sci. Adv. 7, eabf6312 (2021).

See the original post here:

Medical microrobots in reproductive medicine from the bench to the ... - Nature.com

Related Posts

Comments are closed.